1. (Quantifier review: order of quantifiers matters!) Let P be some mathematical assertion. Explain the difference between the statements

"For all $n \in \mathbb{N}$ there exists some $N \in \mathbb{N}$ such that P holds."

"There exists some $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, P holds."

In particular, interpret the following two statements. Re-phrase both statements in colloquial English, and explain why one statement is true and the other is false.

"For all $n \in \mathbb{N}$ there exists some $N \in \mathbb{N}$ such that n > N."

"There exists some $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, n > N."

- 2. (Functions review). Let X and Y be sets, and let $f: X \to Y$ be a function.
 - (a) Prove or give a counterexample: If $U, V \subseteq Y$ are disjoint, then $f^{-1}(U)$ and $f^{-1}(V)$ in X are disjoint.
 - (b) Prove or give a counterexample: If $U, V \subseteq X$ are disjoint, then f(U) and f(V) in Y are disjoint.
- 3. Let (X, d) be a metric space, and let $(a_n)_{n \in \mathbb{N}}$ be a sequence in X. Show that the following two definitions of convergence are equivalent.

Definition (Convergence to a_{∞}). The sequence $(a_n)_{n\in\mathbb{N}}$ converges to a_{∞} if for any $\epsilon > 0$, there is some N in N such that $a_n \in B_{\epsilon}(x)$ for all $n \geq N$.

Definition (Convergence to a_{∞}). The sequence $(a_n)_{n\in\mathbb{N}}$ converges to a_{∞} if for any $\epsilon > 0$, there is some \tilde{N} in \mathbb{N} such that $a_n \in B_{\epsilon}(x)$ for all $n > \tilde{N}$.

- 4. Consider the real numbers \mathbb{R} with the Euclidean metric. Let $S = (0,1) \subseteq \mathbb{R}$. Give a complete and rigorous proof of what the sets \mathring{S} , \overline{S} , and ∂S are.
- 5. Let (X, d) be a metric space. Suppose that $S \subseteq T \subseteq X$.
 - (a) Suppose that x is an accumulation point of S. Must x be an accumulation point of T? Give a proof or a counterexample.
 - (b) Suppose that x is an accumulation point of T. Must x be an accumulation point of S? Give a proof or a counterexample.
- 6. Let $A \subseteq \mathbb{R}$ be a nonempty bounded subset. Prove that its supremum $\sup(A)$ is either in the set A, or it is an accumulation point of A.
- 7. Let (X, d) be a metric space, and let $S \subseteq X$ be a sequentially compact subset.
 - (a) Show by example that not every subsequence of a sequence $(a_n)_{n\in\mathbb{N}}$ in S need necessarily converge.
 - (b) Prove that no subsequence of $(a_n)_{n\in\mathbb{N}}$ can converge to a point in $X\setminus S$.

- 8. Find an explicit homeomorphism bewteen the intervals (0,1) and $(1,\infty)$ with the Euclidean metric.
- 9. Let (X, d) be a metric space with at least two elements. Show that there exist nonempty open sets in X whose closures are disjoint.
- 10. Let (X, d) be a metric space, and let $S \subseteq X$ be a set with no accumulation points. Prove that S is closed.
- 11. (a) Let $S \subseteq X$ be a subset of a metric space X. Explain why, to show that S is closed, it suffices to show that S is the preimage of a closed set under a continuous function.
 - (b) Show that the following subsets of \mathbb{R}^2 (with the usual metric) are closed:

$$\{(x,y) \mid xy=1\}$$
 $S^1 = \{(x,y) \mid x^2 + y^2 = 1\}$ $D^2 = \{(x,y) \mid x^2 + y^2 \le 1\}$

- 12. Let (X, d) be a metric space, and let $S \subseteq X$ be a **finite** subset of X. Give a rigorous proof that $S \dots$
 - (a) is closed.

(c) has no accumulation points.

- (b) is bounded.
- 13. Let (X, d) be a metric space, and let $S \subseteq X$ be a **finite** subset of X. Is it necessarily true that $\mathring{S} = \emptyset$?
- 14. Either prove or find a counterexample to each of the following statements.
 - (i) Let X be a topological space, and $S \subseteq X$. Then $\overline{S} = X \setminus \operatorname{Int}(X \setminus S)$.
 - (ii) Let X be a topological space, and $S \subseteq X$. Then $\overline{S} = \overline{\operatorname{Int}(S)}$.
 - (iii) If $A \subseteq B$, then $Int(A) \subseteq Int(B)$
 - (iv) If $A \subseteq B$, then all accumulation points of A are also accumulation points of B.
 - (v) If Int(A) = Int(B) and $\overline{A} = \overline{B}$, then A = B.
 - (vi) If $\operatorname{Int}(A) = \overline{A}$, then A is both open and closed.
 - (vii) If A is an open set, then $A \cap \partial A = \emptyset$.
 - (viii) Let X be a metric space with the discrete metric, and $A \subseteq X$. Then A has no accumulation points.
 - (ix) Let X be a metric space, and $(a_n)_{n\in\mathbb{N}}$ a sequence of points in X converging to a_{∞} . Then a_{∞} is an accumulation point of the set $\{a_n \mid n \in \mathbb{N}\}$.
- 15. Suppose that (X, d) is a metric space, and that $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ are Cauchy sequences in X. Show that the sequence of real numbers $d(x_n, y_n)$ is a Cauchy sequence in \mathbb{R} (with the Euclidean metric).
- 16. Suppose that (X, d) is a metric space with the property that every bounded sequence converges. Prove that X is a single point.

- 17. (a) Prove that \mathbb{R} with the Euclidean metric is a complete metric space.
 - (b) Prove that the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ with the Euclidean metric is **not** a complete metric space.
 - (c) The function

$$f: \mathbb{R} \longrightarrow \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

 $f(x) = \arctan(x)$

is continuous (which you do not need to prove). Use this function to show that the continuous image of a complete metric space need not be complete.

(d) Suppose that (X, d_X) and (Y, d_Y) are metric spaces, and that X a complete metric space. Suppose that $f: X \to Y$ is a continuous map satisfying

$$d_Y(f(x_1), f(x_2)) = d_X(x_1, x_2)$$
 for all $x_1, x_2 \in X$.

Show that f(X) is a complete metric space.

- 18. Let $f: X \to Y$ be a function of metric spaces. Prove that f is open if and only if $f(\operatorname{Int}(A)) \subseteq \operatorname{Int}(f(A))$ for all sets $A \subseteq X$.
- 19. Let X be a finite set (of, say, n elements), and let d be a metric on X. What is the topology \mathcal{T}_d on X induced by d? Show in particular that this topology will be the same for every possible metric d.
- 20. Let X be a set, and suppose that \mathcal{T}_1 and \mathcal{T}_2 are two topologies on X.
 - (a) Show that the intersection $\mathcal{T}_1 \cap \mathcal{T}_2$ is a topology on X.
 - (b) Show by example that the union $\mathcal{T}_1 \cup \mathcal{T}_2$ need not be a topology on X.
- 21. (a) Show that the following collection of subsets of \mathbb{R} forms a topology on \mathbb{R} .

$$\mathcal{T} = \{\varnothing, \mathbb{R}\} \cup \Big\{ (b, \infty) \mid b \in \mathbb{R} \Big\}.$$

- (b) Determine whether the topology \mathcal{T} is metrizable.
- 22. (a) Let (X, \mathcal{T}_X) be a Hausdorff topological space, and let x_1, \ldots, x_n be a finite collection of points in X. Show that there are open sets U_1, \ldots, U_n such that $x_i \in U_i$, and which are pairwise disjoint (this means $U_i \cap U_j = \emptyset$ for all $i \neq j$).
 - (b) Let X be a finite topological space. Prove if X is Hausdorff, then it has the discrete topology.