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Instructions: This exam has 8 questions for a total of 40 points.

Each student may bring in one double-sided (81
2
” × 11”) sheet of notes, which they must

have either hand-written or typed (in font size at least 12) themselves.

The exam is closed-book. No books, additional notes, cell phones, calculators, or other de-
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Fully justify your answers unless otherwise instructed. You may cite any (non-optional)
results proved on the worksheets, on a quiz, or on the homeworks without proof.
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for accuracy.

Jenny is available to answer questions.
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1. (13 points) For each of the following statements: if the statement is always true, write
“True”. Otherwise, state a counterexample. No further justification needed.

Note: If the statement is not always true, you can receive partial credit for writing
“False” without a counterexample.

(a) Let X be a metric space, x ∈ X, and r > 0. Then any two points y, z in the ball
Br(x) must be distance at most 2r apart.

(b) Let f : X → Y be a continuous function of metric spaces X and Y . If (an)n∈N is a
sequence in X that is Cauchy, then its image

(
f(an)

)
n∈N in Y is also Cauchy.

(c) Let S be a finite subset of a topological space X. Then S has no accumulation
points.

(d) Let (X, d) be a metric space. Then X is T1, T2 (Hausdorff), and regular.

(e) Let X and Y be two non-empty topological spaces with the discrete topology. Then
the product topology on X × Y is the discrete topology.

(f) Let X be any topological space, and let R have the standard topology. Then a
function f : X → R is continuous if and only if f−1((a, b)) is open for every open
interval (a, b) ⊆ R.
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(g) Endow R and Q with the topologies induced by the Euclidean metric. Then the
only continuous maps f : R→ Q are constant maps.

(h) Let X be any topological space, and let R have the standard topology. Let f : X →
R be a continuous function, and let c ∈ R. Then the set {x ∈ X | f(x) ≤ c} is
closed in X.

(i) If A is a subspace of a space X such that Int(A) is connected, then A is connected.

(j) Consider R with the topology {(a,∞) | a ∈ R} ∪ {∅,R}. There is no (continuous)
path from 0 ∈ R to 1 ∈ R.

(k) Let X be a topological space. Then every connected component of X is both open
and closed.

(l) Let X be a topological space, and let A,B be a separation of X. Then A is a union
of connected components of X, as is B.

(m) Let S be a compact subset of a metric space X. Then S is complete.
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2. (4 points) Consider the following statement.

Let f : X → Y be a continuous function of topological spaces.

If X is , then so is f(X).

Circle all properties that truthfully fill in the blank. No justification needed.

metrizable T2 (Hausdorff) connected disconnected

path-connected discrete compact non-compact

(Here, by “X is discrete” we mean “X has the discrete topology”.)

3. (4 points) Consider the following topological spaces X and their subsets S. In each
case, compute the interior Int(S), the closure S, the boundary ∂S, and the set S ′ of
accumulation points of S. No justification necessary.

(a) Let X = {a, b, c, d} with the topology
{
∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, c, d}

}
.

Let S = {a, b, d}.

Int(S): S: ∂S: S ′:

(b) Let X = R with the topology T = {U | 0 ∈ U} ∪ {∅}. Let S = {0, 1}.

Int(S): S: ∂S: S ′:
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4. (4 points) For each of the following sequences: state the set of all limits, or, if the se-
quence has no limits, write “Does not converge”. No justification necessary.

(a) Let X = {a, b, c, d} have the topology {∅, {a}, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}}.

(i) a, b, a, b, a, b, a, b, · · ·

(ii) c, d, c, d, c, d, c, d, · · ·

(b) Let R have the cofinite topology.

(ii) 1, 1
2
, 1

3
, 1

4
, 1

5
, 1

6
, 1

7
, 1

8
, · · ·

(iii) 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, · · ·

5. (6 points) Circle all terms that apply. No justification necessary.

(a) The subspace (0, 1) ⊆ R with the standard topology is . . .

compact connected T1 T2 (Hausdorff)

(b) The subspace {0} ∪
{

1
n
| n ∈ N

}
of R with the standard topology is . . .

compact connected T1 T2 (Hausdorff)

(c) The topology T = {(a,∞) | a ∈ R} ∪ {R} ∪ {∅} on R is . . .

compact connected T1 T2 (Hausdorff)

(d) The topology T = {U | 0 /∈ U} ∪ {R} on R is . . .

compact connected T1 T2 (Hausdorff)
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6. (2 points) For each of the following maps f , circle all properties that apply.

(a)
f : (R, Euclidean)→ (R, cofinite)

f(x) = x continuous open

(b)

Let T = {(a,∞) | a ∈ R} ∪ {R} ∪ {∅}.
f : (R, T )→ (R, T )

f(x) = x + 1 continuous open

7. (3 points) Let X1 be a topological space with basis B1, and let X2 be a topological space
with basis B2. Show that the set

B = { B1 ×B2 | B1 ∈ B1, B2 ∈ B2 }

is a basis for the product topology TX1×X2 .
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8. (4 points) Show that a topological space X is Hausdorff if and only if, for each x ∈ X,⋂
U a neighbourhood of x

U = {x}.
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Blank page for extra work.
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