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1. (9 points) For each of the following statements: if the statement is always true, write
“True”. Otherwise, state a counterexample. No further justification needed.

Note: If the statement is not always true, you can receive partial credit for writing
“False” without a counterexample.

(a) Let f : X → Y be a continuous function of metric spaces X and Y . Then for any
A ⊆ Y , the preimage f−1(A) ⊆ X is closed.

Solution: True. You proved that A is always closed, and that the preimage of a
closed set under a continuous function is closed.

(b) Let X be a metric space, and S ⊆ X. Then ∂S = ∂(X \ S).

Solution: True. See Homework #4 Problem 3(d).

(c) Let X be a metric space, and S ⊆ X. Then ∂S = ∂(S).

Solution: False. Consider S = Q in X = R with the Euclidean metric. Then
∂S = ∂Q = R but ∂(S) = ∂R = ∅.

(d) Let X be a metric space, and A ⊆ X. Then a point x ∈ X is contained in A if and
only if x is an accumulation point of A.

Solution: False. Consider X = R with the Euclidean metric, and S = {1}.
Then 1 ∈ S, but 1 is not an accumulation point of S. (By Quiz #3, finite sets have
no accumulation points).

(e) Let X and Y be metric spaces, and let f : X → Y be a continuous, invertible, open
map. Then f is a homeomorphism.

Solution: True. To be a homeomorphism, the map f must be continuous,
invertible, and have a continuous inverse f−1, and so we only need to check only
the third condition. Let U ∈ X be open. But then its preimage (f−1)−1(U) = f(U)
is open by assumption that f is an open map, so f−1 is continuous.
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(f) Every metric space is Hausdorff.

Solution: True. See Worksheet #4 Problem 2(a).

(g) Let X, Y be metric spaces, and f : X → Y a continuous function. If S ⊆ Y is
sequentially compact, then f−1(S) is sequentially compact.

Solution: False. Consider X = Y = R with the Euclidean metric, and let f be
the constant map f(x) = 0. Then f is continuous, and S = {0} ⊆ R is sequentially
compact, but f−1({0}) = R is not sequentially compact.

(h) Every sequentially compact metric space is complete.

Solution: True. See Worksheet #8 Problem 1.

(i) Every complete metric space is sequentially compact.

Solution: False. For example, we proved on Worksheet #8 that R is complete,
but it cannot be sequentially compact, since it is not bounded.

2. (4 points) Below are two metric spaces X and subsets A. For each subset, state the
interior, closure, and boundary of A, and its set A′ of accumulation points. No justifi-
cation needed.

X = R with the Euclidean metric, A =

{
(−1)n

n

∣∣∣∣ n ∈ N
}

.

Int(A) = ∅ A =
A ∪ {0}

∂A =
A ∪ {0}

A′ =
{0}

X = R with the discrete metric, A = (0, 1) = {x ∈ R | 0 < x < 1}.

Int(A) = A A = A ∂A = ∅ A′ = ∅
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3. (3 points) Let (X, d) be a metric space, and let A ⊆ X. Prove that, if x is an accumula-
tion point of A, then every neighbourhood U of x contains infinitely many points of A.

Solution 1. We will prove the contrapostive: suppose that a point x ∈ X has some
neighbourhood U that contains only finitely many points of A. We will show that x is
not an accumulation point of A. To do this, we must find a ball Br(x) that contains no
points of A except perhaps x itself.

Since U is open, there must be some ball Bε(x) around x contained in U . By assumption,
this ball Bε(x) must contain only finitely many points in A. Let

r = min
a∈A∩Bε(x)

a6=x

{ε, d(x, a)}.

Since r is the minimum of a finite list of strictly positive numbers, we know r > 0.

We may therefore consider the ball Br(x). Since r ≤ ε, Br(x) ⊆ Bε(x) ⊆ U . But since
r ≤ d(x, a) for all a ∈ A∩Bε(x) disctinct from x , it follows that Br(x) does not contain
any points of A, except perhaps x itself. We conclude that x is not an accumulation
point of A, as claimed.

Solution 2. Let x be an accumulation poinit of A, and let U be any neighbourhood
of x. We will identify an infinite set of elements of A in U .

Since x is an interior point of U , there is some ball Bε(x) ⊆ U . By definition of accu-
mulation point, this ball must contain some point a1 ∈ A with a1 6= x.

Since a1 6= x, the distance d(a1, x) must be strictly positive. Hence we can consider
the ball Bd(a1,x)(x) ⊆ Bε(x) ⊆ U . By definition of accumulation point, this ball must
contain some point a2 ∈ A distinct from x. Moreover, by construction, a1 /∈ Bd(a1,x)(x),
so a2 6= a1.

We iterate this process. In general, given a point an ∈ A∩Bε(x) distinct from x, we can
find a new point an+1 in Bd(x,an)(x) that is contained in A and distinct from x. Hence we
have constructed a sequence (an)n∈N of distinct points of A contained in U . We conclude
that U must contain infinitely many points of A, as claimed.
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4. (4 points) Let (X1, d1), (X2, d2), (Y1, D1), (Y2, D2) be metric spaces. Let f : X1 → Y1
and g : X2 → Y2 be continuous functions. Prove that the function

(f × g) : X1 ×X2 → Y1 × Y2
(f × g)(x1, x2) =

(
f(x1), g(x2)

)
is continuous with respect to the product metrics on X1 ×X2 and Y1 × Y2.

Solution. To prove that (f × g) is continuous, we will verify that the preimage of an
open subset of Y1 × Y2 is open in X1 ×X2.

Let U ⊆ Y1× Y2 be open, and consider a point (x1, x2) in its preimage (f × g)−1(U). To
prove that (f × g)−1(U) is open, by Worksheet #9 Problem 3, it is enough to show that
the point (x1, x2) has an open neighbourhood contained in (f × g)−1(U).

Since (x1, x2) ∈ (f×g)−1(U), by definition, this means that the point (f×g)(x1, x2) ∈ U .
But we proved on Worksheet #7 that there is then some neighbourhood U1 × U2 that
contains (f × g)(x1, x2) and is contained in U , with U1 ⊆ Y1 and U2 ⊆ Y2 open sets.

Now

(f × g)−1(U1 × U2) = {(a1, a2) | (f × g)(a1, a2) ∈ U1 × U2}

= {(a1, a2) |
(
f(a1), g(a2)

)
∈ U1 × U2}

= {(a1, a2) | f(a1) ∈ U1 and g(a2) ∈ U2}
= {(a1, a2) | a1 ∈ f−1(U1) and a2 ∈ g−1(U2)}
= f−1(U1)× g−1(U2).

But the subsets f−1(U1) ⊆ X1 and g−1(U2) ⊆ X2 must be open, since f and g are both
continuous by assumption. We proved on Worksheet #7 that the set f−1(U1)× g−1(U2)
must therefore be open.

Then (x1, x2) is contained in the open set f−1(U1) × g−1(U2), and since U1 × U2 ⊆ U ,
we find that

f−1(U1)× g−1(U2) = (f × g)−1(U1 × U2) ⊆ (f × g)−1(U).

By Worksheet #9 Problem 3, we conclude that the set (f × g)−1(U) is open, and hence
that (f × g) is continuous.

Page 4 of 4 End of exam.


