Name: \qquad Score (Out of 6 points):

1. (4 points) For each of the following statements: if the statement is always true, write "True". Otherwise, state a counterexample. No further justification needed.

Note: If the statement is not always true, you can receive partial credit for writing "False" without a counterexample.
(a) Let A be a subset of a topological space X. If A is connected, then \bar{A} is connected.
(b) Let A be a subset of a topological space X. If \bar{A} is connected, then A is connected.
(c) Let X be a topological space with basis \mathcal{B}. If X is disconnected, then there exist basis elements A, B in \mathcal{B} that are a separation of X.
(d) Any continuous function from \mathbb{R} (with the standard topology) to a discrete space X must be a constant function.
2. (2 points) Let $X=\{a, b, c, d\}$ be a topological space with the topology

$$
\mathcal{T}=\{\varnothing,\{a\},\{b\},\{a, b\},\{a, b, c\},\{a, b, d\},\{a, b, c, d\}\} .
$$

Write down a formula for a continuous path in X from a to d. No justification necessary.

