without a counterexample.

Name: _____ Score (Out of 6 points):

- (4 points) For each of the following statements: if the statement is always true, write "True". Otherwise, state a counterexample. No further justification needed. Note: If the statement is not always true, you can receive partial credit for writing "False"
 - (a) Let A be a subset of a topological space X. If A is connected, then \overline{A} is connected.
 - (b) Let A be a subset of a topological space X. If \overline{A} is connected, then A is connected.
 - (c) Let X be a topological space with basis \mathcal{B} . If X is disconnected, then there exist basis elements A, B in \mathcal{B} that are a separation of X.
 - (d) Any continuous function from $\mathbb R$ (with the standard topology) to a discrete space X must be a constant function.

2. (2 points) Let $X = \{a, b, c, d\}$ be a topological space with the topology

$$\mathcal{T} = \left\{ \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\} \right\}.$$

Write down a formula for a continuous path in X from a to d. No justification necessary.