Name: \qquad Score (Out of 6 points):

1. (4 points) For each of the following statements: if the statement is always true, write "True". Otherwise, state a counterexample. No further justification needed.

Note: If the statement is not always true, you can receive partial credit for writing "False" without a counterexample.
(a) Let A be a subset of a topological space X. If A is connected, then \bar{A} is connected.

True. See Homework \#10 Problem 1.
(b) Let A be a subset of a topological space X. If \bar{A} is connected, then A is connected.

False. For example, consider the subset $A=(0,1) \cup(1,2) \subseteq \mathbb{R}$. The set A is disconnected, but its closure $\bar{A}=[0,2]$ is connected.
(c) Let X be a topological space with basis \mathcal{B}. If X is disconnected, then there exist basis elements A, B in \mathcal{B} that are a separation of X.

False. For example, let $X=(-\infty, 0) \cup(0, \infty)$ with the Euclidean metric, and let \mathcal{B} be the corresponding basis of open balls. Then the union of any two basis elements $A, B \subseteq \mathcal{B}$ must be a bounded subset of X, so cannot cover X.
(d) Any continuous function from \mathbb{R} (with the standard topology) to a discrete space X must be a constant function.

True. Hint: You proved on Homework \#10 Problem 2 that \mathbb{R} is connected, and moreover that the continuous image of a connected set is connected. The only nonempty connected subsets of a discrete space X are singleton sets, so the image of a continuous map must be a point.
2. (2 points) Let $X=\{a, b, c, d\}$ be a topological space with the topology

$$
\mathcal{T}=\{\varnothing,\{a\},\{b\},\{a, b\},\{a, b, c\},\{a, b, d\},\{a, b, c, d\}\} .
$$

Write down a formula for a continuous path in X from a to d. No justification necessary.

We seek a function $\gamma:[0,1] \rightarrow X$ with the property that

$$
\gamma(0)=a, \quad \gamma(1)=d, \quad \gamma^{-1}(U) \text { is open for each open subset } U \in \mathcal{T} .
$$

One such function is the following:

$$
\begin{aligned}
& \gamma:[0,1] \longrightarrow X \\
& \gamma(t)= \begin{cases}a, & t \in\left[0, \frac{1}{2}\right), \\
d, & t \in\left[\frac{1}{2}, 1\right]\end{cases}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \gamma^{-1}(\varnothing)=\gamma^{-1}(\{b\})=\varnothing \\
& \gamma^{-1}(\{a\})=\gamma^{-1}(\{a, b\})=\gamma^{-1}(\{a, b, c\})=\left[0, \frac{1}{2}\right), \\
& \gamma^{-1}(\{a, b, d\})=\gamma^{-1}(\{a, b, c, d\})=[0,1] .
\end{aligned}
$$

These are all open subsets of $[0,1]$, so the function γ is continuous as desired.

