Name: _____ Score (Out of 6 points):

1. (4 points) For each of the following statements: if the statement is always true, write "True". Otherwise, state a counterexample. No further justification needed.

Note: If the statement is not always true, you can receive partial credit for writing "False" without a counterexample.

(a) Let A be a subset of a topological space X. If A is connected, then \overline{A} is connected.

True. See Homework #10 Problem 1.

(b) Let A be a subset of a topological space X. If \overline{A} is connected, then A is connected.

False. For example, consider the subset $A = (0, 1) \cup (1, 2) \subseteq \mathbb{R}$. The set A is disconnected, but its closure $\overline{A} = [0, 2]$ is connected.

(c) Let X be a topological space with basis \mathcal{B} . If X is disconnected, then there exist basis elements A, B in \mathcal{B} that are a separation of X.

False. For example, let $X = (-\infty, 0) \cup (0, \infty)$ with the Euclidean metric, and let \mathcal{B} be the corresponding basis of open balls. Then the union of any two basis elements $A, B \subseteq \mathcal{B}$ must be a bounded subset of X, so cannot cover X.

(d) Any continuous function from \mathbb{R} (with the standard topology) to a discrete space X must be a constant function.

True. *Hint:* You proved on Homework #10 Problem 2 that \mathbb{R} is connected, and moreover that the continuous image of a connected set is connected. The only nonempty connected subsets of a discrete space X are singleton sets, so the image of a continuous map must be a point.

2. (2 points) Let $X = \{a, b, c, d\}$ be a topological space with the topology

$$\mathcal{T} = \left\{ \varnothing, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\} \right\}.$$

Write down a formula for a continuous path in X from a to d. No justification necessary.

We seek a function $\gamma:[0,1]\to X$ with the property that

$$\gamma(0) = a, \qquad \gamma(1) = d, \qquad \gamma^{-1}(U) \text{ is open for each open subset } U \in \mathcal{T}.$$

One such function is the following:

$$\begin{split} \gamma : [0,1] &\longrightarrow X \\ \gamma(t) = \begin{cases} a, & t \in [0,\frac{1}{2}), \\ d, & t \in [\frac{1}{2},1] \end{cases} \end{split}$$

Then

$$\begin{split} \gamma^{-1}(\varnothing) &= \gamma^{-1}(\{b\}) = \varnothing, \\ \gamma^{-1}(\{a\}) &= \gamma^{-1}(\{a,b\}) = \gamma^{-1}(\{a,b,c\}) = \left[0,\frac{1}{2}\right), \\ \gamma^{-1}(\{a,b,d\}) &= \gamma^{-1}(\{a,b,c,d\}) = [0,1]. \end{split}$$

These are all open subsets of [0, 1], so the function γ is continuous as desired.