Name: _____ Score (Out of 6 points):

1. (3 points) For each of the following statements: if the statement is always true, write "True". Otherwise, state a counterexample. No further justification needed.

Note: If the statement is not always true, you can receive partial credit for writing "False" without a counterexample.

(a) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and $f : X \to Y$ a continuous function. If $C \subseteq Y$ is compact, then $f^{-1}(C)$ is compact.

(b) Let (X, \mathcal{T}) be a compact topological space. Then every closed subset of X is compact.

(c) Let (X, \mathcal{T}) be a compact topological space. Then every compact subset of X is closed in X.

2. (3 points) Let X be a compact space and Y a Hausdorff space. Suppose that a map $f: X \to Y$ is continuous, and has an inverse f^{-1} . Prove that f^{-1} is continuous.

This result implies:

Theorem. A continuous bijection from a compact space to a Hausdorff space is a homeomorphism.