Name: \qquad Score (Out of 6 points):

1. (3 points) For each of the following statements: if the statement is always true, write "True". Otherwise, state a counterexample. No further justification needed.
Note: If the statement is not always true, you can receive partial credit for writing "False" without a counterexample.
(a) Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be topological spaces, and $f: X \rightarrow Y$ a continuous function. If $C \subseteq Y$ is compact, then $f^{-1}(C)$ is compact.

False. For example, consider \mathbb{R} with the standard topology, and consider the constant map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=0$ for all x. Then f is continuous, and $\{0\} \subseteq \mathbb{R}$ is finite and therefore compact, but $f^{-1}(\{0\})=\mathbb{R}$ is unbounded and therefore noncompact.
(b) Let (X, \mathcal{T}) be a compact topological space. Then every closed subset of X is compact.

True. See Worksheet \#16 Problem 3.
(c) Let (X, \mathcal{T}) be a compact topological space. Then every compact subset of X is closed in X.

False. For example, consider the set $X=\{1,2\}$ with the indiscrete metric. The subset $\{1\}$ is finite and therefore compact, but $\{1\}$ is not closed.
2. (3 points) Let X be a compact space and Y a Hausdorff space. Suppose that a map $f: X \rightarrow Y$ is continuous, and has an inverse f^{-1}. Prove that f^{-1} is continuous.

This result proves:
Theorem. A continuous bijection from a compact space to a Hausdorff space is a homeomorphism.

Solution. Let $f: X \rightarrow Y$ be a continuous map with inverse $f^{-1}: Y \rightarrow X$. To show that f^{-1} is continuous, it suffices to show that $\left(f^{-1}\right)^{-1}(C)$ is closed in Y for every closed subset C of X.
We first observe that

$$
\begin{aligned}
\left(f^{-1}\right)^{-1}(C) & =\left\{y \in Y \mid f^{-1}(y) \in C\right\} \\
& =\left\{y \in Y \mid f^{-1}(y)=c \text { for some } c \in C\right\} \\
& =\{y \in Y \mid y=f(c) \text { for some } c \in C\} \\
& =f(C),
\end{aligned}
$$

so our goal is to show that $f(C)$ is closed in Y for every closed subset $C \subseteq X$.
Let C be a closed subset of X. Since X is compact, by Worksheet $\# 16$ Problem 3, it follows that C is compact. Since f is continuous, by Worksheet \#16 Problem 2, it follows that $f(C)$ is a compact subset of Y. But since Y is Hausdorff, it follows from Worksheet \#16 Problem 4(b) that $f(C)$ is closed in Y.
Thus $\left(f^{-1}\right)^{-1}(C)=f(C)$ is a closed subset of Y, and we conclude that f^{-1} is continuous as claimed.

