Name: _____ Score (Out of 6 points):

1. (3 points) For each of the following statements: if the statement is always true, write "True". Otherwise, state a counterexample. No further justification needed.

Note: If the statement is not always true, you can receive partial credit for writing "False" without a counterexample.

(a) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and $f : X \to Y$ a continuous function. If $C \subseteq Y$ is compact, then $f^{-1}(C)$ is compact.

False. For example, consider \mathbb{R} with the standard topology, and consider the constant map $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 0 for all x. Then f is continuous, and $\{0\} \subseteq \mathbb{R}$ is finite and therefore compact, but $f^{-1}(\{0\}) = \mathbb{R}$ is unbounded and therefore noncompact.

(b) Let (X, \mathcal{T}) be a compact topological space. Then every closed subset of X is compact.

True. See Worksheet #16 Problem 3.

(c) Let (X, \mathcal{T}) be a compact topological space. Then every compact subset of X is closed in X.

False. For example, consider the set $X = \{1, 2\}$ with the indiscrete metric. The subset $\{1\}$ is finite and therefore compact, but $\{1\}$ is not closed.

2. (3 points) Let X be a compact space and Y a Hausdorff space. Suppose that a map $f: X \to Y$ is continuous, and has an inverse f^{-1} . Prove that f^{-1} is continuous.

This result proves:

Theorem. A continuous bijection from a compact space to a Hausdorff space is a homeomorphism.

Solution. Let $f: X \to Y$ be a continuous map with inverse $f^{-1}: Y \to X$. To show that f^{-1} is continuous, it suffices to show that $(f^{-1})^{-1}(C)$ is closed in Y for every closed subset C of X. We first observe that

$$(f^{-1})^{-1}(C) = \{ y \in Y \mid f^{-1}(y) \in C \}$$

= $\{ y \in Y \mid f^{-1}(y) = c \text{ for some } c \in C \}$
= $\{ y \in Y \mid y = f(c) \text{ for some } c \in C \}$
= $f(C),$

so our goal is to show that f(C) is closed in Y for every closed subset $C \subseteq X$.

Let C be a closed subset of X. Since X is compact, by Worksheet #16 Problem 3, it follows that C is compact. Since f is continuous, by Worksheet #16 Problem 2, it follows that f(C) is a compact subset of Y. But since Y is Hausdorff, it follows from Worksheet #16 Problem 4(b) that f(C) is closed in Y.

Thus $(f^{-1})^{-1}(C) = f(C)$ is a closed subset of Y, and we conclude that f^{-1} is continuous as claimed.