Name: \qquad Score (Out of 6 points):

1. (4 points) Fix $n \in \mathbb{N}$, and let $X=\{0,1\}^{n}$, the set of ordered n-tuples of 0 's and 1 's. We define the Hamming distance on X to be the function $d: X \times X \rightarrow \mathbb{R}$, where $d(x, y)$ is defined to be the number of coordinates where the n-tuples x and y differ. For example, if $n=5$, the elements $(0,0,1,0,0)$ and ($0,0,1,1,0$) have Hamming distance 1, because they differ in just one coordinate, the fourth, and agree elsewhere. Hamming distance is an important concept in coding theory.

Prove that the Hamming distance d is a metric on X. Your solution should involve a complete statement of the definition of a metric.

To verify that d is a metric, we must establish that the three conditions hold:
(M1) (Positivity). $d(x, y) \geq 0$ for all $x, y \in X$, and $d(x, y)=0$ if and only if $x=y$.
(M2) (Symmetry). $d(x, y)=d(y, x)$ for all $x, y \in X$.
(M3) (Triangle inequality). $d(x, y)+d(y, z) \geq d(x, z)$ for all $x, y, z \in X$.

To verify (M1), we note that by definition, $d(x, y)$ is always a nonnegative integer, and $d(x, y)=$ 0 if and only if x and y agree in every coordinate, that is, $x=y$.

Condition (M2) follows because $d(x, y)$ is by its definition symmetric in x and y : if x differs from y in m positions, then y differs from x in m positions.

Finally, we check the triangle inequality (M3). Let $x, y, z \in X$. Let $d(x, y)=m$ and $d(y, z)=p$. Suppose that x and y differ in the m coordinate positions $i_{1}, i_{2}, \ldots, i_{m}$, and that y and z differ in the p coordinate positions $j_{1}, j_{2}, \ldots j_{p}$. Then x and z can only possibly differ in coordinate positions $i_{1}, i_{2}, \ldots, i_{m}, j_{1}, j_{2}, \ldots j_{p}$, and this list has at most $p+m$ distinct entries. Thus

$$
d(x, z) \leq p+m=d(x, y)+d(y, z) .
$$

2. (2 points) Let (X, d) be a metric space, and let $x, y \in X$ be distinct points. Prove that there exists an open ball in X that contains x but not y.

Remark: This result shows that metric spaces are T_{1}-spaces.

Let x and y be distinct points of X. Then, by definition of a metric, the distance

$$
d(x, y)>0 .
$$

Let $r=\frac{1}{2} d(x, y)$. By construction $r>0$. Let

$$
U=B_{r}(x)=\{\tilde{x} \in X \mid d(x, \tilde{x})<r\} .
$$

Since $d(x, x)=0<r$, it follows that $x \in U$. However, because

$$
d(x, y)=2 r>r,
$$

the point y is not in U. This proves the claim.

