Name: _____ Score (Out of 5 points):

1. (4 points) Let (X, d) be a metric space, and let $A \subseteq X$. Show that, if $x \in \overline{A}$, then there exists a sequence of points in A converging to x.

Solution: Let $x \in \overline{A}$. This means, by definition of closure, that for every r > 0, the open ball $B_r(x)$ contains a point $a \in A$.

Construct a sequence as follows. Let a_1 be a point of A in the ball $B_1(x)$. Let a_2 be a point of A in the ball $B_{\frac{1}{2}}(x)$. In general, for $n \in \mathbb{N}$, let a_n be any point of A in the ball $B_{\frac{1}{n}}(x)$.

The resultant sequence $(a_n)_{n \in \mathbb{N}}$ satisfies $\{a_n\}_{n \in \mathbb{N}} \subseteq A$ by construction. We will prove that it converges to the point x.

Let $\epsilon > 0$. Choose N large enough so that $N > \frac{1}{\epsilon}$, equivalently, $\frac{1}{N} < \epsilon$. Then for all $n \ge N$, we find that $\frac{1}{n} \le \frac{1}{N} < \epsilon$, and

$$a_n \in B_{\frac{1}{n}}(x) \subseteq B_{\epsilon}(x).$$

Thus $\lim_{n\to\infty} a_n = x$, which concludes the proof.

.

2. (1 point) If the following statement is true, write **True**. Otherwise, state a counterexample. No justification needed.

Let X be a metric space, and let $A, B \subseteq X$. Then $Int(A \cup B) = Int(A) \cup Int(B)$.

Solution: This statement is false. Consider $X = \mathbb{R}$ with the Euclidean metric, and the subsets A = [0, 1] and B = [1, 2]. Then

$$\operatorname{Int}([0,1] \cup [1,0]) = \operatorname{Int}([0,2]) = (0,2) \quad \text{but} \quad \operatorname{Int}([0,1]) \cup \operatorname{Int}([1,2]) = (0,1) \cup (1,2).$$

The first set contains 1 and the second does not.