Name:	Score	Out of 6	points)):
-------	-------	----------	---------	----

1. (3 points) Let (X, d_X) and (Y, d_Y) be metric spaces, and let $f: X \to Y$ be a continuous map. Prove that if $S \subseteq X$ is sequentially compact, then $f(S) \subseteq Y$ is sequentially compact.

Solution: Let $(y_n)_{n\in\mathbb{N}}$ be a sequence of points in f(S). To prove that $f(S)\subseteq Y$ is sequentially compact, we must find a subsequence that converges to a point in f(S).

For each n the point y_n is in the image of S under f, so we can find a point s_n in S with $f(s_n) = y_n$. But S is sequentially compact by assumption, so the resulting sequence $(s_n)_{n \in \mathbb{N}}$ has a subsequence $(s_{n_i})_{i \in \mathbb{N}}$ that converges to some point $s \in S$.

We will consider the corresponding subsequence $(y_{n_i})_{i\in\mathbb{N}}$. By Homework #3 Problem 4, we know that since f is continuous,

$$\lim_{i \to \infty} y_{n_i} = \lim_{i \to \infty} f(s_{n_i}) = f\left(\lim_{i \to \infty} s_{n_i}\right) = f(s).$$

Thus the subsequence $(y_{n_i})_{i\in\mathbb{N}}$ converges to the point $f(s)\in f(S)$, and we conclude that f(S) is sequentially compact.

2. (3 points) Let (X, d_X) and (Y, d_Y) be metric spaces, and let $f: X \to Y$ be a continuous map. Either prove the following statement, or construct (with justification) a counterexample: If $B \subseteq X$ is a bounded subset, then its image $f(B) \subseteq Y$ is bounded.

Solution: This statement is false. Consider, for example, the continuous function

$$f: \left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$$

$$f(x) = \tan(x)$$

where both $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ and \mathbb{R} have the standard Euclidean metric.

Then $B=X=\left(\frac{-\pi}{2},\frac{\pi}{2}\right)$ is bounded, since $B=B_{\frac{\pi}{2}}(0)$. But its image $f(B)=\mathbb{R}$ is not bounded, since \mathbb{R} is not contained in the ball $B_R(a)=(a-R,a+R)$ for any $a\in\mathbb{R}$ or R>0.