| Name: | Score (| Out of | 7 points |): | |-------|---------|--------|----------|----| | | | | | | 1. (3 points) Let (X, \mathcal{T}_X) be a topological space and let $S \subseteq X$ be a subset endowed with the subspace topology \mathcal{T}_S . Suppose that X is Hausdorff. Show that S is Hausdorff. 2. (4 points) Let X and Y be topological spaces, and let $f: X \to Y$ be a continuous **injective** map. Show that, if Y is Hausdorff, then X is Hausdorff.