Name: ______ Score (Out of 9 points):

1. (6 points) Which of the following functions are continuous? Briefly explain your answer.

(a)
$$f: (\mathbb{R}, \text{Euclidean}) \to (\mathbb{R}, \text{cofinite})$$

$$f(x) = x$$

(b)
$$f: (\mathbb{R}, \text{cofinite}) \to (\mathbb{R}, \text{cofinite})$$

$$f(x) = \sin(x)$$

(c) Let
$$X=\{a,b\}$$
 with the topology $\mathcal{T}=\Big\{\varnothing,\{a\},\{a,b\}\Big\}.$
$$f:X\to X$$

$$f(a)=b$$

$$f(b)=a$$

2. (3 points) Our concept of an accumulation point also makes sense in abstract topological spaces:

Definition. Let (X, \mathcal{T}) be a topological space, and $A \subseteq X$. A point $x \in X$ is an accumulation point of A if and only if every neighbourhood of x contains a point of A distinct from x.

Let (X, \mathcal{T}) be a topological space, and $A \subseteq X$. Let \mathcal{B} be a basis for \mathcal{T} . Prove that x is an accumulation point of A if and only if every basis element $B \in \mathcal{B}$ containing x contains a point of A distinct from x.