disconnected.

Nan	me:	Score (Out of 6 points):
1.	(3 points) For each of the following statements: if the statement is always true, write "True' Otherwise, state a counterexample. No further justification needed.	
	Note: If the statement is not always true, you can receive without a counterexample.	e partial credit for writing "False"
	(a) Let A and B be nonempty subsets of a topological spa and $A \cap B$ is nonempty, then $A \cup B$ is connected.	ce (X, \mathcal{T}) . If A and B are connected
	(b) Let A and B be nonempty subsets of a topological spa and $A\cap B$ is nonempty, then $A\cap B$ is connected.	ce (X, \mathcal{T}) . If A and B are connected

(c) Let A and B be nonempty subsets of a topological space. If $A \cap B = \emptyset$, then $A \cup B$ is

2. (3 points) Let X be a topological space. Suppose that A is a nonempty proper subset of X such that $\partial A = \emptyset$. Show that X is disconnected.