1 Open and closed sets

Definition 1.1. (Open ball of radius r about x_0 .) Let (X, d) be a metric space, and $x_0 \in X$. Let $r \in \mathbb{R}$, r > 0. We define the *open ball of radius* r *about* x_0 as the subset of X

$$B_r(x_0) = \{ x \in X \mid d(x_0, x) < r \} \subseteq X.$$

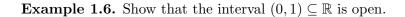
Example 1.2. Let $X = \mathbb{R}$ with the usual Euclidean metric d(x,y) = |x-y|. What is $B_1(0)$? What is $B_2(-6)$?

Example 1.3. Let $X = \mathbb{R}^2$ with the usual Euclidean metric. Draw $B_2(1,0)$.

Definition 1.4. (Interior points; open sets in a metric space.) Let (X, d) be a metric space, and let $U \subseteq X$ be a subset of X. A point $x \in U$ is called an *interior point of* U if there is some radius $r_x \in \mathbb{R}$, $r_x > 0$, so that $B_{r_x}(x) \subseteq U$.

The set $U \subseteq X$ is called *open* if every point $x \in U$ is an interior point of U.

Example 1.5. Show that the interval $[0,1) \subseteq \mathbb{R}$ is not open.



Proposition 1.7. Let (X,d) be a metric space, $x_0 \in X$ and $0 < r \in \mathbb{R}$. Then the ball $B_r(x_0)$ is an open subset of X.

Proof.

Definition 1.8. (Closed sets in a metric space.) A subset $C \subseteq X$ is *closed* if its complement $X \setminus C$ is open.

In-class Exercises

- 1. Let (X, d) be a metric space. Solve (with justification) the following:
 - (a) Is X open?
- (b) Is \varnothing open?
- (c) Is X closed?
- (d) Is \varnothing closed?
- 2. Consider \mathbb{R} with the Euclidean metric. Find an example of a subset of \mathbb{R} that is ...
 - (a) open and not closed,

(c) both open and closed,

(b) closed and not open,

- (d) neither open nor closed.
- 3. Let $X = \mathbb{R}^2$. Sketch the balls $B_1(0,0)$ and $B_2(0,0)$ for each of the following metrics on \mathbb{R}^2 . Denote $\overline{x} = (x_1, x_2)$ and $\overline{y} = (y_1, y_2)$.
 - (a) $d(\overline{x}, \overline{y}) = ||\overline{x} \overline{y}|| = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2}$
 - (b) $d(\overline{x}, \overline{y}) = |x_1 y_1| + |x_2 y_2|$
 - (c) $d(\overline{x}, \overline{y}) = \max\{|x_1 y_1|, |x_2 y_2|\}$
 - (d) $d(\overline{x}, \overline{y}) = \begin{cases} 0, & \overline{x} = \overline{y} \\ 1, & \overline{x} \neq \overline{y} \end{cases}$
- 4. Let $\{U_i\}_{i\in I}$ denote a collection of open sets in a metric space (X,d).
 - (a) Prove that the union $\bigcup_{i \in I} U_i$ is an open set. Do not assume that I is necessarily finite, or countable!
 - (b) Show by example that the intersection $\bigcap_{i\in I} U_i$ may not be open. (This means, give an example of a metric space (X,d) and a collection of open sets $U_i\subseteq X$, and prove that $\bigcap_{i\in I} U_i$ is not open).
 - (c) Now assume we have a **finite** collection $\{U_i\}_{i=1}^n$ of open sets in a metric space. Prove that the intersection $\bigcap_{i=1}^n U_i$ is open.
- 5. (Optional).
 - (a) Rigorously verify that the sets $\{1\}$, $[1, \infty)$, and $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots\} \cup \{0\}$ are all closed subsets of \mathbb{R} (with the Euclidean metric).
 - (b) Consider \mathbb{R} with the Euclidean metric. Is the subset $\mathbb{Q} \subseteq \mathbb{R}$ open? Is it closed?
 - (c) Recall that C(0,2) is the set of continuous functions from the closed interval [0,2] to \mathbb{R} , and that

$$d_{\infty}: \mathcal{C}(0,2) \times \mathcal{C}(0,2) \longrightarrow \mathbb{R}$$
$$d(f,g) = \sup_{x \in [0,2]} |f(x) - g(x)|$$

defines a metric on C(0,2). Determine whether the subset $\{f(x) \in C(0,2) \mid f(1) = 0\}$ is closed, open, neither, or both.

- 6. (Optional). Let X be a finite set, and let d be any metric on X. What can you say about which subsets of X are open? Which subsets of X are closed?
- 7. (Optional). Let (X, d) be a metric space, and let $x \in X$. Prove that the singleton set $\{x\}$ is closed.