1 Sequential Compactness

Definition 1.1. (Subsequences.) Let (X, d) be a metric space, and let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X. Let

$$
0<n_{1}<n_{2}<\cdots<n_{i}<\cdots
$$

be an infinite sequence of strictly increasing natural numbers. Then $\left(a_{n_{i}}\right)_{i \in \mathbb{N}}$ is called a subsequence of $\left(a_{n}\right)_{n \in \mathbb{N}}$.

Proposition 1.2. Suppose that $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a sequence in a metric space (X, d) that converges to a point a_{∞}. Show that any subsequence of $\left(a_{n}\right)_{n \in \mathbb{N}}$ also converges to a_{∞}.

Definition 1.3. (Sequantially compact metric spaces; sequentially compact subsets.) A metric space (X, d) is called sequentially compact if every sequence in X has a convergent subsequence. Similarly, a subset $S \subseteq X$ is sequentially compact if every sequence of points in S has a subsequence that converges to a point in S.

By convention, the empty set \varnothing is considered sequentially compact.

Example 1.4. Give examples of sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ of real numbers with the following properties:
(a) The sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ has a subsequence that converges to 0 , and a subsequence that converges to 1 .
(b) The sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ has no convergent subsequence.
(c) The sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is an unbounded sequence with a subsequence that converges to 0 .

In-class Exercises

1. Suppose that (X, d) is a sequentially compact metric space, and that $C \subseteq X$ is a closed subset. Prove that C is sequentially compact.
2. Let (X, d) be a metric space.
(a) Prove that every sequentially compact subset of X is closed.
(b) Definition (Bounded subset.) Let (X, d) be a metric space. A subset $S \subseteq X$ is called bounded if there is some $x_{0} \in X$ and some $R \in \mathbb{R}$ with $R>0$ such that $S \subseteq B_{R}\left(x_{0}\right)$.
Prove that every sequentially compact subset of X is bounded.
(c) Is it true that every closed and bounded subset of a metric space is sequentially compact?
3. (Optional). Let (X, d) be a metric space, and $A \subseteq X$ a subset. Show that A is bounded if and only if there is some $M \in \mathbb{R}$ so that $d(a, b) \leq M$ for all $a, b \in A$.
4. (Optional). Let X be a metric space with the discrete metric. Give necessary and sufficient conditions for a subset of X to be sequentially compact.
5. (Optional). Recall that the space $\mathcal{C}([a, b])$ of continuous functions $f:[a, b] \rightarrow \mathbb{R}$ is a metric space with metric

$$
d_{\infty}(f, g)=\sup _{x \in[a, b]}|f(x)-g(x)| .
$$

(a) Show that $\mathcal{C}([a, b])$ is unbounded. Conclude that it is not sequentially compact.
(b) Consider the subset

$$
C=\{f(x) \in \mathcal{C}([0,1])| | f(x) \mid \leq 1 \text { for all } x \in[0,1]\} .
$$

Is C sequentially compact?
6. (Optional). Let X be a metric space, and let $a_{\infty} \in X$. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X with the property that every subsequence of $\left(a_{n}\right)_{n \in \mathbb{N}}$ has a subsequence that converges to a_{∞}. Prove that $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges to a_{∞}.

7. (Optional).

(a) Consider the sequence of real numbers

$$
0,1,0, \frac{1}{2}, 1,0, \frac{1}{3}, \frac{2}{3}, 1,0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1,0, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, 1, \ldots
$$

What real numbers can be realized as the limit of a subsequence of this sequence?
(b) Is it possible to construct a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ with subsequences converging to every real number $r \in \mathbb{R}$?

