## 1 Product Metrics

Definition 1.1. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. Then their Cartesian product $X \times Y$ has a metric space structure, defined by the metric

$$
\begin{aligned}
d_{X \times Y}:(X \times Y) \times(X \times Y) & \longrightarrow \mathbb{R} \\
d_{X \times Y}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & =\sqrt{d_{X}\left(x_{1}, x_{2}\right)^{2}+d_{Y}\left(y_{1}, y_{2}\right)^{2}}
\end{aligned}
$$

We will call $d_{X \times Y}$ the product metric on $X \times Y .{ }^{1}$
Example 1.2. Consider $\mathbb{R}$ with the Euclidean metric. What is the product metric on $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$ ?

## In-class Exercises

1. Verify that $d_{X \times Y}$ does in fact define a metric on $X \times Y$.
2. (a) Prove that if $U \subseteq X$ and $V \subseteq Y$ are open sets, then $U \times V$ is an open subset of $X \times Y$.
(b) Let $U \subseteq X \times Y$ be an open set, and let $(x, y) \in U$. Show that there is a neighbourhood $U_{x}$ of $x$ in $X$ and a neighbourhood $U_{y}$ of $y$ in $Y$ so that $U_{x} \times U_{y} \subseteq U$.
3. Definition (Projection maps). For a product of sets $X \times Y$, the maps

$$
\begin{array}{rrr}
\pi_{X}: X \times Y & \rightarrow X & \pi_{Y}: X \times Y \rightarrow Y \\
\pi_{X}(x, y)=x & \pi_{Y}(x, y)=y
\end{array}
$$

are called the projection onto $X$ and the projection onto $Y$, respectively.
(a) Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be topological spaces, and endow their product $X \times Y$ with the product metric $d_{X \times Y}$. Show that the projection map

$$
\pi_{X}:\left(X \times Y, d_{X \times Y}\right) \longrightarrow\left(X, d_{X}\right)
$$

is continuous. (The same argument, which you do not need to repeat, shows that the map $\pi_{Y}$ is continuous).
(b) Prove that the projection map $\pi_{X}$ is open. (The same argument shows $\pi_{Y}$ is open).

Hint: Use Question 2.
4. (Optional). A map is called closed if the image of every closed set is closed. Prove or find a counterexample: the projection map $\pi_{X}: X \times Y \rightarrow X$ is always a closed map.

[^0]5. (Optional). Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces.
(a) Show that each of the following functions also defines a metric on $X \times Y$.
\[

$$
\begin{aligned}
& d_{1}:(X \times Y) \times(X \times Y) \longrightarrow \mathbb{R} \\
& d_{1}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right) \\
& d_{\infty}:(X \times Y) \times(X \times Y) \longrightarrow \mathbb{R} \\
& d_{X \times Y}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\max \left\{d_{X}\left(x_{1}, x_{2}\right), d_{Y}\left(y_{1}, y_{2}\right)\right\} .
\end{aligned}
$$
\]

(b) Show that these metrics on $X \times Y$ are all topologically equivalent to the metric $d_{X \times Y}$. This means that a subset of $X \times Y$ open with respect to one metric if and only if it is open with respect to the other.
6. (Optional). Let $\left(X_{i}, d_{i}\right)$ be metric spaces for $i \in \mathbb{N}$. Can you find a natural way to define a metric on the infinite product $\prod_{i \in \mathbb{N}} X_{i}=X_{1} \times X_{2} \times X_{3} \times \cdots$ ?
There are multiple ways to do this, which are not topologically equivalent!
7. (Optional). Let $(X, d)$ be a metric space. Show that the map $d: X \times X \rightarrow \mathbb{R}$ is continuous with respect to the product metric on $X \times X$ and the standard topology on $\mathbb{R}$.


[^0]:    ${ }^{1}$ Remark: In light of Problem $5(\mathrm{c})$, any of the metrics in Problem 5 - among others - are sometimes called the product metrics on $X \times Y$. For clarity in this course we will use this term specifically for the metric $d_{X \times Y}$.

