Recommended reading: Munkres Section 23-25.

Roughly similar content:
Notes by John Rognes, Section 3.1-3.3 https://www.uio.no/studier/emner/matnat/math/MAT4500/h13/topology.pdf

Warm-up questions

(These warm-up questions are optional, and won't be graded.)

1. We can construct a torus T as a quotient of the unit square $[0,1] \times[0,1]$ by imposing the equivalence relation that $(0, y) \sim(1, y)$ for all y and $(x, 0) \sim(x, 1)$ for all x, as shown. Let $p:[0,1] \times[0,1] \rightarrow T$ be the quotient map.

(a) Use the universal property of the quotient to explain why the map

$$
\begin{aligned}
g:[0,1] \times[0,1] & \longrightarrow \mathbb{R} \\
(x, y) & \longmapsto \sin (2 \pi x)
\end{aligned}
$$

factors through the quotient map p (this means there is a map f with $f \circ p=g$), descending to a well-defined, continuous map $f: T \rightarrow \mathbb{R}$.
(b) Decide which of the following maps $g:[0,1] \times[0,1] \rightarrow \mathbb{R}$ descend to a well-defined and continuous $\operatorname{map} f: T \rightarrow \mathbb{R}$.

$$
\begin{gathered}
g(x, y)=\sin (2 \pi x) \cos (2 \pi y) \quad g(x, y)=0 \quad g(x, y)=y \sin (2 \pi x) \\
g(x, y)=\left|x-\frac{1}{2}\right| \quad g(x, y)=\left\{\begin{array}{l}
0,(x, y)=(0,0),(1,0),(0,1),(1,1) \\
1, \text { otherwise }
\end{array}\right.
\end{gathered}
$$

2. (a) Let $X \neq \varnothing$ have the indiscrete topology. Show that X is both connected and path-connected.
(b) Let X be a set of at least two elements with the indiscrete topology. Show that X is neither connected nor path-connected.
3. Suppose x, y are points in a topological space X joined by a path $f:[a, b] \rightarrow X$. Show that there is a path of the form $g:[0,1] \rightarrow X$ from x to y. Conclude that it would be equivalent to define (as some sources do) path-connectedness in terms of paths of the form $[0,1] \rightarrow X$.
4. Let $X=\{a, b, c\}$. Determine which of the following topologies on X are connected, and which are path-connected.
(i) $\{\varnothing,\{a, b, c\}\}$
(iii) $\{\varnothing,\{c\},\{a, b\},\{a, b, c\}\}$
(v) $\{\varnothing,\{a\},\{b\},\{a, b\},\{a, b, c\}\}$
(ii) $\{\varnothing,\{c\},\{a, b, c\}\}$
(iv) $\{\varnothing,\{c\},\{b, c\},\{a, b, c\}\}$
(vi) $\{\varnothing,\{b\},\{c\},\{a, b\},\{b, c\},\{a, b, c\}\}$

Assignment questions

(Hand these questions in! Unless otherwise indicated, give a complete, rigorous justification for each solution.)

1. (a) Definition (linear continuum). Let L be a totally ordered set with at least two elements. Then L is called a linear continuum if:

- L has the least upper bound property: every nonempty subset of L with an upper bound has a least upper bound;
- if $x<y$ for $x, y \in L$, then there exists some $z \in L$ with $x<z<y$.

Let L be a linear continuum. Prove that L is connected, as are intervals and half-rays in L.
Remark: The most important example of a linear continuum is \mathbb{R} (or subintervals of \mathbb{R}), and this is the reason we wish to study them. Approaching the following questions from the viewpoint of linear continua help us identify precisely which properties of \mathbb{R} we are using.
(b) Let X be an ordered set with the order topology. Show that, if X is connected, then X is a linear continuum.
(c) Prove the following theorem.

Theorem (Intermediate Value Theorem). Let $f: X \rightarrow Y$ be a continuous map from a connected space X to an ordered set Y with the order topology. Suppose $a, b \in X$ and $r \in Y$ is a point lying between $f(a)$ and $f(b)$. Prove that there is a point c such that $f(c)=r$.
Remark: Part (a) then implies the following special case of the Intermediate Value Theorem (familiar from real analysis): Let $[a, b] \subseteq \mathbb{R}$ and let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. If r is any number between $f(a)$ and $f(b)$, then there is some $c \in[a, b]$ with $f(c)=r$.
(d) Prove that any continuous function $f:[0,1] \rightarrow[0,1]$ has a fixed point. (In other words, show that there is some $x \in[0,1]$ so that $f(x)=x)$.
Hint: Consider the function $g:[0,1] \rightarrow \mathbb{R}$ given by $g(x)=f(x)-x$.
2. Let X be a topological space.
(a) Let $f:[a, b] \rightarrow X$ be path from x to y and let $g:[c, d] \rightarrow X$ be a path from y to z. Show that the following function is a path from x to z.

$$
\begin{aligned}
h:[a, b+d-c] & \longrightarrow X \\
h(x) & =\left\{\begin{aligned}
& f(x), a \leq x \leq b \\
& g(x-b+c), b \leq x \leq b+d-c
\end{aligned}\right.
\end{aligned}
$$

Hint: Homework $6 \# 2(b)$. You may use without proof the fact that linear functions $\mathbb{R} \rightarrow \mathbb{R}$ are continuous.
(b) Show that the relation

$$
x \sim y \quad \Longleftrightarrow \quad \text { there is a path from } x \text { to } y
$$

is an equivalence relation on X. Its equivalence classes are called the path components of X.
(c) In a sentence, explain why every connected component of X is a union of path components.
(d) Prove the following.

Theorem (Connected components vs. path components). Let X be a topological space. If X is locally path connected, then the connected components and the path components of X are the same.
3. (a) Show that none of the spaces $[0,1],(0,1]$, and $(0,1)$ are homeomorphic. Similarly, show that $(0,1)$ and the unit circle are not homeomorphic. Hint: What happens when you remove a point from these spaces?
(b) Show that \mathbb{R} is not homeomorphic to \mathbb{R}^{n} for $n>1$.
4. We proved in class that a finite product of connected spaces is connected. In this problem we will investigate infinite products of connected spaces. Let $\mathbb{R}^{\omega}=\prod_{\mathbb{N}} \mathbb{R}$.
(a) Consider \mathbb{R}^{ω} with the box topology. Prove that the set B of all bounded sequences of real numbers, and the set A of all unbounded sequences of real numbers, separate \mathbb{R}^{ω}. Conclude that \mathbb{R}^{ω} is disconnected in the box topology.
(b) Does this argument work to show that \mathbb{R}^{ω} is disconnected in the uniform topology?
(c) Consider \mathbb{R}^{ω} with the product topology. Show that \mathbb{R}^{ω} is path-connected, and therefore connected.
5. Determine whether the set $\mathbb{R}^{2} \backslash \mathbb{Q}^{2}$ is connected or path-connected.

