Recommended reading: Munkres Section 26-28.

Roughly similar content: Hatcher, Chapter 3 https://pi.math.cornell.edu/ hatcher/Top/TopNotes.pdf.

Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Show that, if a space X is locally path-connected at $x \in X$, then X is locally connected at x. Conclude that a locally path-connected space is locally connected.
- 2. Show that a space X is locally (path-)connected if and only if X has a basis of open sets that are (path-)connected.
- 3. Let X be a topological space, and $A \subseteq X$. Recall that, by 'a connected component of A', we mean a connected component of the space A in the subspace topology.
 - (a) Show by example that two points a and b in A can be in different connected components of A, but the same connected component of X.
 - (b) Suppose that a and b are in the same connected component of A. Can they be in different connected components of X?
- 4. Finish our proof in class of the following result:

Let X be a topological space and $Y \subseteq X$ a subset. Then Y is compact in the subspace topology if and only if every collection $\mathcal{U} = \{U_i\}_{i \in I}$ of subsets of open subsets of X covering Y contains a finite subcover $U_{i_1}, \ldots U_{i_n}$ of Y.

5. Determine whether \mathbb{R} is compact when given each of the following topolgies.

(a) the discrete topology	(e) the cofinite topology
(b) the indiscrete topology	(f) the cocountable topology
(c) the standard topology	(g) $\mathcal{T} = \{\mathbb{R}\} \cup \{U \subseteq \mathbb{R} \mid 0 \notin U\}$
(d) $\mathcal{T} = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\emptyset\} \cup \{\mathbb{R}\}$	(h) $\mathcal{T} = \{ \varnothing \} \cup \{ U \subseteq \mathbb{R} \mid 0 \in U \}$

Assignment questions

(Hand these questions in! Unless otherwise indicated, give a complete, rigorous justification for each solution.)

- 1. In this question we will investigate the relationship between 'closed' and 'compact'.
 - (a) Prove the following result.

Theorem. Every closed subspace of a compact space is compact.

- (b) Give an example of a space X and a subspace $Y \subseteq X$ that is compact but not closed.
- (c) Let X be a Hausdorff space, and let $Y \subseteq X$ a compact subspace. Let $x_0 \in X \setminus Y$. Show that there are disjoint open subsets U and V of X such that $x_0 \in U$ and $Y \subseteq V$. Use this result to deduce the following.

Theorem. Every compact subspace of a Hausdorff space is closed.

- 2. In this problem, we will show that a product of topological spaces X and Y is compact if and only if X and Y are compact.
 - (a) Let X and Y be topological spaces, and that their Cartesian product $X \times Y$ is compact with respect to the product topology. Prove that X and Y are compact.

- (b) Let X and Y be compact topological spaces. Let \mathcal{U} be any open cover of $X \times Y$ (with the product topology). For this exercise, we will call a subset $A \subseteq X$ good if $A \times Y$ is covered by a finite subcollection of open sets in \mathcal{U} . Our goal is to show that X is good.
 - (i) Suppose that A_1, \ldots, A_r is a finite collection of good subsets of X. Show that their union is good.
 - (ii) Fix $x \in X$. For each $y \in Y$, explain why it is possible to find open sets $U_y \in X$ and $V_y \in Y$ so that $(x, y) \in U_y \times V_y$ and $U_y \times V_y$ is contained in some open set in \mathcal{U} .
 - (iii) Explain why there is a finite list of points $y_1, \ldots, y_n \in Y$ so that the sets $\{V_{y_1}, \ldots, V_{y_n}\}$ cover Y.
 - (iv) Define

$$U_x = U_{y_1} \cap U_{y_2} \cap \dots \cap U_{y_n}.$$

Show that U_x is a good set, and is an open subset of X containing x. This shows that every element $x \in X$ is contained in a good open set U_x .

- (v) Consider the collection of open subsets $\{U_x \mid x \in X\}$ of X. Use the fact that X is compact to conclude that X is good.
- 3. (a) Prove the following theorem.

Theorem (Closed intervals are compact). Let X be a totally ordered set with the least upper bound property. Show that, in the order topology, for all $a, b \in X$, the closed interval [a, b] is compact.

This shows in particular that closed intervals [a, b] in \mathbb{R} are compact.

You may wish to use the following steps. Let \mathcal{U} be an open cover of [a, b].

- (i) Show that, if $x \in [a, b]$, $x \neq b$, then there exists a point y > x such that [x, y] can be covered by at most two elements of \mathcal{U} .
- (ii) Let $C = \{ y \in (a, b] \mid [a, y] \text{ can be covered by finitely many elements of } \mathcal{U} \}$. Then C is nonempty, and so has a least upper bound c.
- (iii) The least upper bound c is contained in C.
- (iv) The least upper bound c = b.
- (b) Prove the following theorem.

Theorem (Compact subspaces of \mathbb{R}^n). Consider \mathbb{R}^n with the Euclidean metric. A subspace $A \subseteq \mathbb{R}^n$ is compact if and only if it is closed and bounded.

Hint: First use Problems 2 (b) and 3 (a) to show that $[-N, N]^n \subseteq \mathbb{R}^n$ is compact.

(c) Prove the following theorem.

Theorem (Extreme value theorem). Let $f: X \to Y$ be a continuous function from a compact set X to a totally ordered set Y with the order topology. Then f achieves its maximum and minimum values. In other words, there exist points $c, d \in X$ so that $f(c) \leq f(x) \leq f(d)$ for all $x \in X$.

4. **Definition (Diameter of a bounded set).** Let A be a bounded subset of a metric space (X, d). Then the *diameter* of A is defined to be

$$\sup\{ d(a,b) \mid a, b \in A \}.$$

Definition (Lebesgue number of an open cover). Let \mathcal{U} be an open cover of a metric space (X, d). Then a *Lebesgue number* for \mathcal{U} , if it exists, is a number $\delta > 0$ such that for every subset S of X of diameter less than δ , there is an element of \mathcal{U} containing S.

Suppose that X is a sequentially compact metric space. Prove that every open cover \mathcal{U} of X has a Lebesgue number $\delta > 0$.

5. (Bonus).

Definition (Real projective *n*-space). Projective space $P^n(\mathbb{R})$ is defined to be the quotient space of $\mathbb{R}^{n+1} \setminus \{\mathbf{0}\}$ by the equivalence relation

 $\mathbf{x} \sim \alpha \mathbf{x}$ for all $\alpha \in \mathbb{R} \setminus \{0\}$ and $\mathbf{x} \in \mathbb{R}^{n+1} \setminus \{\mathbf{0}\}$.

- (a) Show that $P^n(\mathbb{R})$ is *locally Euclidean*, in the sense that every point of $P^n(\mathbb{R})$ has a neighbourhood homeomorphic to \mathbb{R}^n .
- (b) Show that $P^n(\mathbb{R})$ is compact.
- (c) Let V be a vector space over a field \mathbb{F} , and define the corresponding projective space P(V) to be the quotient of $V \setminus \{\mathbf{0}\}$ by the relation

$$\mathbf{x} \sim \alpha \mathbf{x}$$
 for all $\alpha \in \mathbb{F} \setminus \{0\}$ and $\mathbf{x} \in V \setminus \{\mathbf{0}\}$.

Show that any injective linear map $L: V \to W$ of finite dimensional vector spaces induces a map $P(V) \to P(W)$. When \mathbb{F} is a topological field, show that the induced map is continuous with respect to the quotient topology on P(V) and P(W). In particular, show that $\operatorname{GL}_{n+1}(\mathbb{R})$ acts on $P^n(\mathbb{R})$ by continuous maps, and find the kernel of this action.