
Math 590 Homework #11 Friday 29 March 2019

Recommended reading: Munkres Section 26-28.

Roughly similar content: Hatcher, Chapter 3 https://pi.math.cornell.edu/ hatcher/Top/TopNotes.pdf.

Warm-up questions

(These warm-up questions are optional, and won’t be graded.)

1. Show that, if a space X is locally path-connected at x ∈ X, then X is locally connected at x. Conclude
that a locally path-connected space is locally connected.

2. Show that a space X is locally (path-)connected if and only if X has a basis of open sets that are
(path-)connected.

3. Let X be a topological space, and A ⊆ X. Recall that, by ‘a connected component of A’, we mean a
connected component of the space A in the subspace topology.

(a) Show by example that two points a and b in A can be in different connected components of A, but
the same connected component of X.

(b) Suppose that a and b are in the same connected component of A. Can they be in different connected
components of X?

4. Finish our proof in class of the following result:

Let X be a topological space and Y ⊆ X a subset. Then Y is compact in the subspace
topology if and only if every collection U = {Ui}i∈I of subsets of open subsets of X covering
Y contains a finite subcover Ui1 , . . . Uin of Y .

5. Determine whether R is compact when given each of the following topolgies.

(a) the discrete topology

(b) the indiscrete topology

(c) the standard topology

(d) T = {(a,∞) | a ∈ R} ∪ {∅} ∪ {R}

(e) the cofinite topology

(f) the cocountable topology

(g) T = {R} ∪ {U ⊆ R | 0 /∈ U}
(h) T = {∅} ∪ {U ⊆ R | 0 ∈ U}

Assignment questions

(Hand these questions in! Unless otherwise indicated, give a complete, rigorous justification for each solution.)

1. In this question we will investigate the relationship between ‘closed’ and ‘compact’.

(a) Prove the following result.

Theorem. Every closed subspace of a compact space is compact.

(b) Give an example of a space X and a subspace Y ⊆ X that is compact but not closed.

(c) Let X be a Hausdorff space, and let Y ⊆ X a compact subspace. Let x0 ∈ X \ Y . Show that there
are disjoint open subsets U and V of X such that x0 ∈ U and Y ⊆ V . Use this result to deduce
the following.

Theorem. Every compact subspace of a Hausdorff space is closed.

2. In this problem, we will show that a product of topological spaces X and Y is compact if and only if X
and Y are compact.

(a) Let X and Y be topological spaces, and that their Cartesian product X×Y is compact with respect
to the product topology. Prove that X and Y are compact.

Page 1



Math 590 Homework #11 Friday 29 March 2019

(b) Let X and Y be compact topological spaces. Let U be any open cover of X × Y (with the product
topology). For this exercise, we will call a subset A ⊆ X good if A × Y is covered by a finite
subcollection of open sets in U . Our goal is to show that X is good.

(i) Suppose that A1, . . . , Ar is a finite collection of good subsets of X. Show that their union is
good.

(ii) Fix x ∈ X. For each y ∈ Y , explain why it is possible to find open sets Uy ∈ X and Vy ∈ Y so
that (x, y) ∈ Uy × Vy and Uy × Vy is contained in some open set in U .

(iii) Explain why there is a finite list of points y1, . . . , yn ∈ Y so that the sets {Vy1 , . . . , Vyn} cover
Y .

(iv) Define
Ux = Uy1

∩ Uy2
∩ · · · ∩ Uyn

.

Show that Ux is a good set, and is an open subset of X containing x. This shows that every
element x ∈ X is contained in a good open set Ux.

(v) Consider the collection of open subsets {Ux | x ∈ X} of X. Use the fact that X is compact to
conclude that X is good.

3. (a) Prove the following theorem.

Theorem (Closed intervals are compact). Let X be a totally ordered set with the
least upper bound property. Show that, in the order topology, for all a, b ∈ X, the closed
interval [a, b] is compact.

This shows in particular that closed intervals [a, b] in R are compact.

You may wish to use the following steps. Let U be an open cover of [a, b].

(i) Show that, if x ∈ [a, b], x 6= b, then there exists a point y > x such that [x, y] can be covered
by at most two elements of U .

(ii) Let C = { y ∈ (a, b] | [a, y] can be covered by finitely many elements of U}.
Then C is nonempty, and so has a least upper bound c.

(iii) The least upper bound c is contained in C.

(iv) The least upper bound c = b.

(b) Prove the following theorem.

Theorem (Compact subspaces of Rn). Consider Rn with the Euclidean metric. A
subspace A ⊆ Rn is compact if and only if it is closed and bounded.

Hint: First use Problems 2 (b) and 3 (a) to show that [−N,N ]n ⊆ Rn is compact.

(c) Prove the following theorem.

Theorem (Extreme value theorem). Let f : X → Y be a continuous function from
a compact set X to a totally ordered set Y with the order topology. Then f achieves
its maximum and minimum values. In other words, there exist points c, d ∈ X so that
f(c) ≤ f(x) ≤ f(d) for all x ∈ X.

4. Definition (Diameter of a bounded set). Let A be a bounded subset of a metric space
(X, d). Then the diameter of A is defined to be

sup{ d(a, b) | a, b ∈ A}.

Definition (Lebesgue number of an open cover). Let U be an open cover of a metric
space (X, d). Then a Lebesgue number for U , if it exists, is a number δ > 0 such that for every
subset S of X of diameter less than δ, there is an element of U containing S.

Suppose that X is a sequentially compact metric space. Prove that every open cover U of X has a
Lebesgue number δ > 0.
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5. (Bonus).

Definition (Real projective n-space). Projective space Pn(R) is defined to be the quotient
space of Rn+1 \ {0} by the equivalence relation

x ∼ αx for all α ∈ R \ {0} and x ∈ Rn+1 \ {0}.

(a) Show that Pn(R) is locally Euclidean, in the sense that every point of Pn(R) has a neighbourhood
homeomorphic to Rn.

(b) Show that Pn(R) is compact.

(c) Let V be a vector space over a field F, and define the corresponding projective space P (V ) to be
the quotient of V \ {0} by the relation

x ∼ αx for all α ∈ F \ {0} and x ∈ V \ {0}.

Show that any injective linear map L : V → W of finite dimensional vector spaces induces a map
P (V ) → P (W ). When F is a topological field, show that the induced map is continuous with
respect to the quotient topology on P (V ) and P (W ). In particular, show that GLn+1(R) acts on
Pn(R) by continuous maps, and find the kernel of this action.
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