Recommended reading: Munkres Section 29-30.

Roughly similar content:

 $\label{eq:main_state} https://faculty.etsu.edu/gardnerr/5357/notes/Munkres-29.pdf https://faculty.etsu.edu/gardnerr/5357/notes/Munkres-30.pdf$

Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Let X be a metric space. Verify that any ϵ -ball $B_{\epsilon}(x) \subseteq X$ has diameter 2ϵ .
- 2. Let X be a space.
 - (a) Show that the finite union of compact subspaces of X is compact.
 - (b) Show by example that a countable union of compact subspaces need not be compact.
- 3. Let X be a set with the discrete topology. Show that X is locally compact.
- 4. Let X be a locally compact space, and let $f: X \to Y$ be both continuous and open. Show that f(X) is locally compact.
- 5. Prove the following. *Hint:* Problem #3 (f).
 - (a) The one-point compactification of \mathbb{R} is homeomorphic to the unit circle S^1 .
 - (b) The one-point compactification of \mathbb{N} is homeomorphic to the subspace $\{\frac{1}{n} \mid n \in \mathbb{N}\} \cup \{0\}$ of \mathbb{R} .
- 6. (a) Let X be a topological space, and \mathcal{B} a basis for its topology. Fix $x \in X$. Show that the set of neighbourhoods od x contained in \mathcal{B} form a local basis at x.
 - (b) Conclude that any second countable space is first countable.
- 7. (a) Show that a subspace of a first countable (respectively, second countable) space is also first countable (respectively, second countable).
 - (b) Show that a product of countably many first countable (respectively, second countable) spaces is also first countable (respectively, second countable).
- 8. We proved the following results for metric spaces. Verify that the same proof will imply these results for any first-countable topological space.
 - (a) **Theorem.** Let X be a topological space, and $A \subseteq X$. If there is a sequence of points in A converging to x, then $x \in \overline{A}$. If X is first-countable, then the converse holds: for every point $x \in \overline{A}$, there is some sequence of points in A converging to x.
 - (b) **Theorem.** Let $f : X \to Y$ be a function of topological spaces. If $(a_n)_{n \in \mathbb{N}}$ is a sequence of points in X converging to a, then the sequence $(f(a_n))_{n \in \mathbb{N}}$ in Y converges to f(a). If X is first-countable, then the converse holds: if for every sequence $(a_n)_{n \in \mathbb{N}}$ in X converging to a the sequence $(f(a_n))_{n \in \mathbb{N}}$ converges to f(a), then f is continuous.
- 9. Show that \mathbb{R}^{ω} (with the box topology) is not first-countable.
- 10. Let $Y \subseteq X$ be a subspace of a space X. Prove or disprove: if A is dense in X, then $A \cap Y$ is dense in Y.
- 11. For fixed $n \ge 0$, show that \mathbb{R}^n is *separable* (Problem #4) by finding a countable dense subset.

Assignment questions

(Hand these questions in! Unless otherwise indicated, give a complete, rigorous justification for each solution.)

1. **Definition (The Cantor set).** Let $A_0 = [0, 1]$. Construct A_1 from A_0 be deleting the "middle third", the open set $(\frac{1}{3}, \frac{2}{3})$. Construct A_2 from A_1 by deleting the "middle thirds" $(\frac{1}{9}, \frac{2}{9}) \cup (\frac{7}{9}, \frac{8}{9})$. More generally, define

$$A_n = A_{n-1} \setminus \bigcup_{k=0}^{\infty} \left(\frac{1+3k}{3^n}, \frac{2+3k}{3^n} \right).$$

The *Cantor set* is the set $C = \bigcap_{n \in \mathbb{N}} A_n$ as a subspace of the unit interval [0, 1].

- (a) Show that C is totally disconnected, that is, show that its connected components are single points.
- (b) Show that C is compact.
- (c) Show that C has no isolated points.
- (d) Show that C is uncountable.
- 2. **Definition (Uniform continuity).** A function $f : (X, d_X) \to (Y, d_Y)$ of metric spaces is *uniformly continuous* if for every $\epsilon > 0$, there is some $\delta > 0$ so that $d_Y(f(a), f(b)) < \epsilon$ for all points $a, b \in X$ with $d_X(a, b) < \delta$.

In other words, this is a stronger notion of continuity, where the choice of δ does not depend on the point *a*.

Prove the following theorem. *Hint:* Lebesgue numbers.

Theorem (Uniform continuity theorem). Let $f : (X, d_X) \to (Y, d_Y)$ be a continuous function from a compact metric space (X, d_X) to a metric space (Y, d_Y) . Then f is uniformly continuous.

3. Given a Hausdorff and locally compact space X, our goal is to embed X into a compact Hausdorff space.

Definition (Alexandroff compactification). Let X be a topological space, and let $\hat{X} = X \cup \{\infty\}$ be the set we obtain by adding a point ∞ which we call the point at infinity. We endow \hat{X} with the following topology:

 $\mathcal{T} = \{ U \subseteq \hat{X} \mid U \subseteq X \text{ is open, or } \hat{X} \setminus U \text{ is a closed, compact subset of } X \}.$

The resulting topological space \hat{X} is called the *Alexandroff extension* of X. If X is a noncompact, locally compact, Hausdorff space, then \hat{X} is called the *one-point compactification* or the *Alexandroff compactification* of X.

Notice, in particular, that X is an open subset of \hat{X} .

- (a) Verify that \mathcal{T} is in fact a topology.
- (b) Verify that \hat{X} is compact.
- (c) Suppose that X is locally compact and Hausdorff. Verify that \hat{X} is Hausdorff.
- (d) Show that the inclusion map $X \hookrightarrow \hat{X}$ is an embedding.

- (e) Show that, if X is not compact, then the closure of X (as a subset of \hat{X}) is \hat{X} . Show, in contrast, that if X is compact, then $X \cup \{\infty\}$ is a separation of \hat{X} .
- (f) Suppose that X is noncompact, locally compact and Hausdorff. Show that any compactification of X by one point must be homeomorphic to the Alexandroff compactification.
- (g) Suppose that a topological space X is a subspace of a compact Hausdorff space Y such that $Y \setminus X$ is a single point. Show that X must be Hausdorff and locally compact.
- 4. **Definition (Separable space).** A space X is called *separable* if X contains a countable dense subset A.

Note that the term "separable" is unrelated to the concept of a "separation" of X.

- (a) Suppose that a space X is second countable. Show that X is separable.
- (b) Show by example that a separable space need not be second countable.
- (c) Show that a metric space X is second countable if and only if it is separable.

5. Bonus (Optional).

Definition (Hausdorff dimension). Let X be a closed and bounded subset of \mathbb{R}^n . For $\delta > 0$, define $H^{\delta}_{\epsilon}(X)$ to be the infemum of the quantity $\sum_i \operatorname{diam}(U_i)^{\delta}$ taken over all open covers $\mathcal{U} = \{U_i\}$ of X with $\operatorname{diam}(U_i) < \epsilon$ for all *i*. Define

$$H^{\delta}(X) = \lim_{\epsilon \to 0} H^{\delta}_{\epsilon}(X).$$

The Hausdorff dimension $\dim_H(X)$ is defined to be the quantity

$$\dim_H(X) = \inf\{\delta \mid H^{\delta}(X) = 0\}.$$

- (a) Show that a countable subset $X \subseteq \mathbb{R}^n$ has Hausdorff dimension 0.
- (b) Compute the Hausdorff dimension of $[0,1]^m \times \{0\}^{n-m}$.
- (c) Compute the Hausdorff dimension of the Cantor set C.