
Math 590 Homework #12 Friday 5 April 2019

Recommended reading: Munkres Section 29-30.

Roughly similar content:
https://faculty.etsu.edu/gardnerr/5357/notes/Munkres-29.pdf

https://faculty.etsu.edu/gardnerr/5357/notes/Munkres-30.pdf

Warm-up questions

(These warm-up questions are optional, and won’t be graded.)

1. Let X be a metric space. Verify that any ε-ball Bε(x) ⊆ X has diameter 2ε.

2. Let X be a space.

(a) Show that the finite union of compact subspaces of X is compact.

(b) Show by example that a countable union of compact subspaces need not be compact.

3. Let X be a set with the discrete topology. Show that X is locally compact.

4. Let X be a locally compact space, and let f : X → Y be both continuous and open. Show that f(X) is
locally compact.

5. Prove the following. Hint: Problem #3 (f).

(a) The one-point compactification of R is homeomorphic to the unit circle S1.

(b) The one-point compactification of N is homeomorphic to the subspace { 1n | n ∈ N} ∪ {0} of R.

6. (a) Let X be a topological space, and B a basis for its topology. Fix x ∈ X. Show that the set of
neighbourhoods od x contained in B form a local basis at x.

(b) Conclude that any second countable space is first countable.

7. (a) Show that a subspace of a first countable (respectively, second countable) space is also first countable
(respectively, second countable).

(b) Show that a product of countably many first countable (respectively, second countable) spaces is
also first countable (respectively, second countable).

8. We proved the following results for metric spaces. Verify that the same proof will imply these results for
any first-countable topological space.

(a) Theorem. Let X be a topological space, and A ⊆ X. If there is a sequence of points in
A converging to x, then x ∈ A. If X is first-countable, then the converse holds: for every
point x ∈ A, there is some sequence of points in A converging to x.

(b) Theorem. Let f : X → Y be a function of topological spaces. If (an)n∈N is a sequence
of points in X converging to a, then the sequence (f(an))n∈N in Y converges to f(a). If X
is first-countable, then the converse holds: if for every sequence (an)n∈N in X converging
to a the sequence (f(an))n∈N converges to f(a), then f is continuous.

9. Show that Rω (with the box topology) is not first-countable.

10. Let Y ⊆ X be a subspace of a space X. Prove or disprove: if A is dense in X, then A∩Y is dense in Y .

11. For fixed n ≥ 0, show that Rn is separable (Problem #4) by finding a countable dense subset.
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Assignment questions

(Hand these questions in! Unless otherwise indicated, give a complete, rigorous justification for each solution.)

1. Definition (The Cantor set). Let A0 = [0, 1]. Construct A1 from A0 be deleting the
“middle third”, the open set ( 1

3 ,
2
3 ). Construct A2 from A1 by deleting the “middle thirds”

( 1
9 ,

2
9 ) ∪ ( 7

9 ,
8
9 ). More generally, define

An = An−1 \
∞⋃
k=0

(
1 + 3k

3n
,

2 + 3k

3n

)
.

The Cantor set is the set C =
⋂
n∈NAn as a subspace of the unit interval [0, 1].

A0

A1

A2

A3

A4

A5

A6

(a) Show that C is totally disconnected, that is, show that its connected components are single points.

(b) Show that C is compact.

(c) Show that C has no isolated points.

(d) Show that C is uncountable.

2. Definition (Uniform continuity). A function f : (X, dX) → (Y, dY ) of metric spaces is
uniformly continuous if for every ε > 0, there is some δ > 0 so that dY (f(a), f(b)) < ε for all
points a, b ∈ X with dX(a, b) < δ.

In other words, this is a stronger notion of continuity, where the choice of δ does not depend
on the point a.

Prove the following theorem. Hint: Lebesgue numbers.

Theorem (Uniform continuity theorem). Let f : (X, dX) → (Y, dY ) be a continuous
function from a compact metric space (X, dX) to a metric space (Y, dY ). Then f is uniformly
continuous.

3. Given a Hausdorff and locally compact space X, our goal is to embed X into a compact Hausdorff space.

Definition (Alexandroff compactification). Let X be a topological space, and let
X̂ = X ∪ {∞} be the set we obtain by adding a point ∞ which we call the point at infinity.
We endow X̂ with the following topology:

T = {U ⊆ X̂ | U ⊆ X is open, or X̂ \ U is a closed, compact subset of X}.

The resulting topological space X̂ is called the Alexandroff extension of X. If X is a noncom-
pact, locally compact, Hausdorff space, then X̂ is called the one-point compactification or the
Alexandroff compactification of X.

Notice, in particular, that X is an open subset of X̂.

(a) Verify that T is in fact a topology.

(b) Verify that X̂ is compact.

(c) Suppose that X is locally compact and Hausdorff. Verify that X̂ is Hausdorff.

(d) Show that the inclusion map X ↪→ X̂ is an embedding.
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(e) Show that, if X is not compact, then the closure of X (as a subset of X̂) is X̂. Show, in contrast,
that if X is compact, then X ∪ {∞} is a separation of X̂.

(f) Suppose that X is noncompact, locally compact and Hausdorff. Show that any compactification of
X by one point must be homeomorphic to the Alexandroff compactification.

(g) Suppose that a topological space X is a subspace of a compact Hausdorff space Y such that Y \X
is a single point. Show that X must be Hausdorff and locally compact.

4. Definition (Separable space). A space X is called separable if X contains a countable
dense subset A.

Note that the term “separable” is unrelated to the concept of a “separation” of X.

(a) Suppose that a space X is second countable. Show that X is separable.

(b) Show by example that a separable space need not be second countable.

(c) Show that a metric space X is second countable if and only if it is separable.

5. Bonus (Optional).

Definition (Hausdorff dimension). Let X be a closed and bounded subset of Rn. For
δ > 0, define Hδ

ε (X) to be the infemum of the quantity
∑
i diam(Ui)

δ taken over all open
covers U = {Ui} of X with diam(Ui) < ε for all i. Define

Hδ(X) = lim
ε→0

Hδ
ε (X).

The Hausdorff dimension dimH(X) is defined to be the quantity

dimH(X) = inf{δ | Hδ(X) = 0}.

(a) Show that a countable subset X ⊆ Rn has Hausdorff dimension 0.

(b) Compute the Hausdorff dimension of [0, 1]m × {0}n−m.

(c) Compute the Hausdorff dimension of the Cantor set C.
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