Recommended reading: Munkres Section 43, 45, 46.

Roughly similar content:

```
https://faculty.etsu.edu/gardnerr/5357/notes/Munkres-43.pdf
https://faculty.etsu.edu/gardnerr/5357/notes/Munkres-45.pdf
https://faculty.etsu.edu/gardnerr/5357/notes/Munkres-46.pdf
```

Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Prove that a closed subset A of a complete metric space (X, d) is also complete as a metric space $(A, d|_A)$ with respect to the restriction of the metric.
- 2. Let (X, d) be a metric space, and let $\overline{d}(x, y) = \min\{d(x, y), 1\}$.
 - (a) Verify that \overline{d} is a metric on X.
 - (b) Verify that \overline{d} is equivalent to d. Conclude that a sequence converges in (X, d) if and only if it converges in (X, \overline{d}) .
 - (c) Show that a sequence is Cauchy in (X, d) if and only if it is Cauchy in (X, \overline{d}) .
 - (d) Conclude that (X, d) is complete if and only if (X, \overline{d}) is complete.
- 3. Let $(x_n)_{n \in \mathbb{N}}$ be a Cauchy sequence in a metric space X. Prove that $\{x_n \mid n \in \mathbb{N}\}$ is bounded.
- 4. Let X be a metric space with the discrete metric. Show that X is complete.
- 5. Let X be a totally bounded metric space. Prove that X is bounded.
- 6. (a) Let X be a finite metric space. Show that X is totally bounded.
 - (b) Let X be a compact metric space. Show that X is totally bounded.
- 7. Let Y^X denote the space of functions $f: X \to Y$ for some topological space Y and set X.
 - (a) Verify that the sup metric ρ is well-defined on subset of bounded functions $f: X \to Y$.
 - (b) Verify that, if X is compact, then every function in $\mathscr{C}(X,Y)$ is bounded, so ρ is well-defined on $\mathscr{C}(X,Y)$.
 - (c) Verify that the uniform metric $\overline{\rho}$ satisfies

$$\overline{\rho}(f,g) = \min\{\rho(f,g),1\}.$$

- (d) Verift that both $\overline{\rho}$ and ρ induce the uniform topology.
- 8. Let $\mathcal{F} \subseteq \mathscr{C}(X, Y)$. Show that if \mathcal{F} is finite, then it is equicontinuous.

Assignment questions

(Hand these questions in! Unless otherwise indicated, give a complete, rigorous justification for each solution.)

1. **Definition (Completion).** Let X be a metric space. The *completion* of X is a complete metric space Y along with an isometric embedding $h: X \to Y$ such that h(X) is dense in Y.

In this question, we will construct the completion of X, and verify that it is unique up to isometry.

(a) Let A be a dense subset of metric space Z. Show that, if every Cauchy subsequence in A converges in Z, then Z is complete.

(b) Let (X, d) be a metric space. Let \tilde{X} denote the set of Cauchy sequences $(x_n)_{n \in \mathbb{N}}$ in X. Let Y denote the equivalences classes defined by the equivalence relation on \tilde{X} ,

 $(x_n)_{n \in \mathbb{N}} \sim (y_n)_{n \in \mathbb{N}} \qquad \Longleftrightarrow \qquad d(x_n, y_n) \xrightarrow{n \to \infty} 0.$

Verify that this is indeed an equivalence relation.

(c) For $\mathbf{x} = (x_n)_{n \in \mathbb{N}}$ and $\mathbf{y} = (y_n)_{n \in \mathbb{N}}$, let $[\mathbf{x}]$ and $[\mathbf{y}]$ denote the corresponding equivalence classes. Define

$$D: Y \times Y \to \mathbb{R}$$
$$D([\mathbf{x}], [\mathbf{y}]) = \lim_{n \to \infty} d(x_n, y_n).$$

Show that D is well-defined, that is, its value does not depend on the choice of representative of the equivalence class.

- (d) Show that D defines a metric on Y.
- (e) Define

$$h: X \to Y$$
$$x \mapsto [(x)_{n \in \mathbb{N}}]$$

sending a point x to the constant sequence $(x)_{n \in \mathbb{N}}$. Show that h is an isometric embedding.

- (f) Show that, for any Cauchy sequence $\mathbf{x} = (x_n)_{n \in \mathbb{N}}$ in X, the sequence $(h(x_n))_{n \in \mathbb{N}}$ converges in Y to $[\mathbf{x}]$. Conclude that h(X) is dense ins Y.
- (g) Further conclude that every Cauchy sequence in h(X) must converge in Y, and thus by part (a) the space (Y, D) is complete. This shows that Y is the completion of X.
- (h) Show that this completion is unique, in the sense of the following theorem.

Theorem (The completion of X is unique up to isometry). Let $h : X \to Y$ and $h' : X \to Y'$ be isometric embeddings of the metric space (X, d) into complete metric spaces (Y, D) and (Y', D'), respectively. Then there is an isometry of $(\overline{h(X)}, D)$ and $(\overline{h'(X)}, D')$ that equals $h' \circ h^{-1}$ when restricted to the subspace h(X).

2. (a) Prove the following theorem.

Theorem (Compact metric spaces). Let (X, d) be a metric space. Then X is compact if and only if it is complete and totally bounded.

- (b) Let X be a space and let Y be a metric space. Suppose that $\mathcal{F} \subseteq \mathscr{C}(X, Y)$ is totally bounded in the uniform metric. Show that \mathcal{F} is equicontinuous.
- (c) Let X be a compact space, and consider \mathbb{R}^n with the Euclidean metric d. Show that any compact subset of $\mathscr{C}(X, \mathbb{R}^n)$ in the uniform topology is equicontinuous and pointwise bounded under d.
- (d) Let X be a compact space, and consider \mathbb{R}^n with the Euclidean metric d. Let $\mathcal{F} \subseteq \mathscr{C}(X, \mathbb{R}^n)$ be equicontinuous and pointwise bounded under d. Show that its closure $\overline{\mathcal{F}}$ in the uniform topology is also equicontinuous and pointwise bounded under d.
- (e) Let X be a compact space, and let Y be a compact metric space. Let $\mathcal{F} \subseteq \mathscr{C}(X, Y)$ be equicontinuous. Show that \mathcal{F} is totally bounded in the uniform metric and in the sup metric.
- (f) Let X be a compact space, and consider \mathbb{R}^n with the Euclidean metric d. Let $\mathcal{F} \subseteq \mathscr{C}(X, \mathbb{R}^n)$ be equicontinuous and pointwise bounded under d. Show that there exists a compact subset $Y \subseteq \mathbb{R}^n$ such that $\bigcup_{f \in \mathcal{F}} f(X)$ is contained in Y.
- (g) Prove the following theorem.

Theorem (Ascoli's Theorem). Let X be a compact space, and consider \mathbb{R}^n with the Euclidean metric d. A subset $\mathcal{F} \subseteq (X, \mathbb{R}^n)$ has compact closure (in the uniform topology) if and only if \mathcal{F} is equicontinuous and pointwise bounded under d.

(h) Prove the following theorem.

Theorem (Arzela's Theorem). Let X be a compact space, and let $(f_n)_{n \in \mathbb{N}}$ be a sequence of points in $\mathscr{C}(X, \mathbb{R}^k)$. If $\{f_n \mid n \in \mathbb{N}\}$ is pointwise bounded and equicontinuous, then the sequence has a uniformly convergent subsequence.

- 3. (a) Let X be a compact space, and let Y be a metric space. Show that the uniform topology, the topology of compact convergence, and the compact-open topology on $\mathscr{C}(X,Y)$ all coincide. In particular, conclude that these topologies depend only on the topology on Y, and not the particular metric.
 - (b) Prove the following theorem.

Theorem (The evaluation map is continuous). Let X be a locally compact, Hausdorff space. Let Y be a space, and consider $\mathscr{C}(X,Y)$ with the compact-open topology. The evaluation map e is continuous:

$$\begin{split} e: X \times \mathscr{C}(X,Y) &\to Y \\ e(x,f) = f(x). \end{split}$$

(c) Prove the following theorem.

Theorem (The product-Hom adjunction). Let X and Y be spaces, and $\mathscr{C}(X, Y)$ have the compact-open topology. If $f: X \times Z \to Y$ is a continuous map, then the induced map

$$F: Z \to \mathscr{C}(X, Y)$$
$$z \mapsto [x \mapsto f(x, z)]$$

is continuous. The converse holds if X is locally compact and Hausdorff.

- 4. (a) Let X be a complete metric space, and let $C_1 \supseteq C_2 \supseteq C_3 \supseteq \cdots$ be a nested sequence of nonempty closed subsets of X. Show that, if $(\operatorname{diam}(C_n))_{n \in \mathbb{N}}$ converges to zero, then $\bigcap_{n \in \mathbb{N}} C_n$ is nonempty.
 - (b) Prove the following.

Theorem (Baire category theorem for complete metric spaces). Any complete metric space X is a Baire space.