Recommended reading: Munkres Section 13, 14, 15, 16, 17.

Roughly similar content:

Hatcher https://pi.math.cornell.edu/~hatcher/Top/TopNotes.pdf, subsections "Subspaces", "Product spaces", & "Interior, Closure, and Boundary" Warning: Hatcher uses a different definition of *limit point* than we (or Munkres) do. https://en.wikipedia.org/wiki/Order_topology

Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. (a) Show by example that topological spaces X can have subsets that are
 - closed and not open both c
 - open and not closed

- open and not closed
- (b) Recite the Topologist Scout Oath:

"On my honour, I will do my best to never claim to prove a set is closed by showing that it is not open, and to never claim to prove a set is open by showing that it is not closed."

- 2. (a) Let X be a topological space with the discrete topology. Show that every subset of X is closed.
 - (b) Let X be a topological space with the indiscrete topology. Show that the closed subsets of X are precisely $\{\emptyset, X\}$.
 - (c) Let X be a topological space with the cofinite topology. Show that the closed sets are precisely the sets $\{X\} \cup \{S \subseteq X \mid S \text{ is finite}\}.$
- 3. See Assignment Question #3 for the definition of the subspace topology. Let $X = \{a, b, c, d\}$. Let \mathcal{T} be the topology on X

 $\mathcal{T} = \{ \varnothing, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}, X \}.$

Write down the subspace topology \mathcal{T}_S induced on the subset $S = \{a, b, d\} \subseteq X$.

- 4. Consider the set Y = (0, 1] as a subspace of \mathbb{R} . Which of the following sets are open in Y? Which are open in \mathbb{R} ?
 - (a) $A = \{ x \mid \frac{1}{2} < |x| < 1 \}$ (b) $A = \{ x \mid \frac{1}{2} \le |x| < 1 \}$ (c) $A = \{ x \mid \frac{1}{2} < |x| \le 1 \}$ (d) $A = \{ x \mid \frac{1}{2} \le |x| \le 1 \}$ (e) $A = \{ \frac{1}{n} \mid n \in \mathbb{N} \}$
- 5. (a) Suppose that X is a topological space with the discrete topology. Is the subspace topology of a subset $S \subseteq X$ necessarily the discrete topology on S?
 - (b) Suppose that X is a topological space with the indiscrete topology. Is the subspace topology of a subset $S \subseteq X$ necessarily the indiscrete topology on S?
- 6. (a) Let (X, \mathcal{T}) be a topological space. Let $S \subseteq X$ and let \mathcal{T}_S be the subspace topology on S. Prove that if S is an open subset of X, and if $U \in \mathcal{T}_S$, then $U \in \mathcal{T}$.
 - (b) Suppose that X is a topological space and $S \subseteq X$. Show that, if S is open, then the inclusion map i_S (See Assignment Question #3) is an open map.
- 7. Let X be a topological space. Let $A \subseteq B \subseteq X$, and let B be a topological space with the subspace topology. Show that the subspace topology on A as a subspace of X coincide with the subspace topology on A as a subspace of X.

- both closed and open
- neither closed nor open

- 8. See Assignment Problem #4 for the definition of the *order topology* on a totally ordered set X. Consider the rays $(a, \infty) = \{x \in X \mid a < x\} \subseteq X$. Show that the collections of sets $\{(a, \infty) \mid a \in X\}$ are the basis for a topology on X, and moreover that this topology is coarser than the order topology.
- 9. Show that the order topology on \mathbb{Z} is the discrete topology.
- 10. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and let $y_0 \in Y$. Consider the map

$$f: X \longrightarrow X \times Y$$
$$x \longmapsto (x, y_0)$$

where $X \times Y$ has the product topology. Show that the map f is always continuous, but that it may not be an open map.

- 11. Let X be a topological space, and $A \subseteq X$ Explain the sense in which \overline{A} is the "smallest" closed set containing A, and the sense in which $\operatorname{int}(A)$ is the "largest" open set contained in A.
- 12. Let $X = \{a, b, c, d\}$. Let \mathcal{T} be the topology on X

$$\mathcal{T} = \{ \varnothing, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}, X \}.$$

Find the interior and closure of the subsets

(a) $\{a, b, c\}$ (b) $\{a, c, d\}$ (c) $\{a, b, d\}$ (d) $\{b\}$ (e) $\{d\}$ (f) $\{b, d\}$

13. Show the following.

- (a) If $A \subseteq B$, then $Int(A) \subseteq Int(B)$.
- (b) If $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$.
- (c) If A is closed in Y and Y is closed in X, then A is closed in X.

14. Find all limit points of the following subsets of \mathbb{R} (with the standard topology).

(a) \mathbb{R} (c) (0,1)	(e) N	(g) \mathbb{Q}
----------------------------	-------	------------------

(b) \varnothing (d) $\{0\}$ (f) $\left\{\frac{1}{n} \mid n \in \mathbb{N}\right\}$ (h) $\left\{\frac{a}{2^n} \mid a, n \in \mathbb{N}\right\}$

Assignment questions

(Hand these questions in! Unless otherwise indicated, give a complete, rigorous justification for each solution.)

- 1. (a) Let X and Y be topological spaces. Prove or give a counterexample: if $f: X \to Y$ is an open map, then f(C) is closed for every closed set $C \subseteq X$.
 - (b) State examples of the following. No justification necessary.
 - (i) topological spaces X and Y, and a map $f: X \to Y$ that is open but not continuous,
 - (ii) topological spaces X and Y, and a map $f: X \to Y$ that is continuous but not open,
 - (iii) topological spaces X and Y, and a map $f: X \to Y$ that is both open and continuous,
 - (iv) topological spaces X and Y, and a map $f: X \to Y$ that is neither open nor continuous.
- 2. **Definition (Subbases).** Let X be a set, and let S be a collection of subsets of X whose union is equal to X. Then the *topology generated by the subbasis* S is the collection of all arbitrary unions of all finite intersections of elements in S.

Remark: Notably, in contrast to a basis, we are permitted to take finite intersections of sets in a subbasis.

- (a) Show that the set \mathcal{T} generated by a subbasis \mathcal{S} is a topology, and is moreover the coarsest topology containing \mathcal{S} . *Hint:* It suffices to show that the collection of all finite intersections of elements of \mathcal{S} is a basis.
- (b) Verify that $S = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{(-\infty, a) \mid a \in \mathbb{R}\}$ is a subbasis for the standard topology on \mathbb{R} .
- (c) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Verify that

 $\mathcal{S} = \{\pi_X^{-1}(U) \mid U \in \mathcal{T}_X\} \cup \{\pi_Y^{-1}(V) \mid V \in \mathcal{T}_Y\}$

is a subbasis for the product topology on $X \times Y$. Conclude that the product topology is the coarsest topology making the projection maps π_X and π_Y continuous.

3. Given a topological space X, there is an induced topological space structure on any subset $S \subseteq X$.

Definition (The subspace topology). Let (X, \mathcal{T}_X) be a topological space, and let $S \subseteq X$ be a subset. Then the *subspace topology* on S is defined to be

$$\mathcal{T}_S = \{ U \cap S \mid U \in \mathcal{T}_X \}.$$

- (a) Verify that the subspace topology \mathcal{T}_S is in fact a topology.
- (b) Show that a set $C \subseteq S$ is closed if and only if there is some set $D \subseteq X$ that is closed with $C = D \cap S$.
- (c) Define the *inclusion* of S into X to be the map

$$i_S: S \to X$$
$$i_S(s) = s.$$

Show that this map is continuous with respect to the topology \mathcal{T}_X on X and the subspace topology \mathcal{T}_S on S. Show moreover that \mathcal{T}_S is precisely the set $\{i_S^{-1}(U) \mid U \subseteq X \text{ open}\}$, so the subspace topology is the coarsest possible topology on S making the inclusion map continuous.

- (d) Suppose that S is an **open** set in the topological space X. Show that the map i is an open map. (Recall that this means that $i(V) \subseteq X$ is open for every open set $V \subseteq S$.)
- (e) Let \mathcal{B}_X be a basis for the topology on X. Show that the set $\mathcal{B}_S = \{B \cap S \mid B \in \mathcal{B}_X\}$ is a basis for the subspace topology on S.

4. (The order topology).

- (a) Review the definition of a totally ordered set (also called a simply or linearly ordered set); either in Munkres Section 3, or (eg) on Wikipedia. State, in your own words, the definition of a total order on a set.
- (b) **Definition (The order topology).** Let X be a set with at least two elements and a total order <. Then the *order topology* on X is the topology generated by the basis \mathcal{B} consisting of the following sets:
 - All open intervals $(a, b) = \{x \mid a < x < b\}$ in X.
 - All half-open intervals $[a_0, b) = \{x \mid a_0 \le x < b\}$, where a_0 is the smallest element (if any) of X.
 - All half-open intervals $(a, b_0] = \{x \mid a \leq x < b_0\}$, where b_0 is the largest element (if any) of X.

Prove that the set \mathcal{B} is in fact a basis.

Remark: Notice that the order topology on \mathbb{R} (with its usual order) is the standard topology.

- (c) Give an example (with proof) of a subset $S \subseteq \mathbb{R}$ where the subspace topology on S (as a subset of \mathbb{R}) is **not** the same as the order topology on S (with the order inherited from the order on \mathbb{R}).
- (d) A subset Y of an ordered set X is called *convex* if, whenever a and b are elements of Y, the whole interval $(a, b) \subseteq Y$. Prove that, if Y is a convex subset of X, then order topology on Y coincides with the subspace topology on Y induced by the order topology on X.

5. Let X and Y be topological spaces. Suppose that \mathcal{B}_X is a basis generating the topology on X, and \mathcal{B}_Y for Y. Show that the set

$$\{C \times D \mid C \in \mathcal{B}_X, D \in \mathcal{B}_Y\}$$

is a basis for the product topology on $X \times Y$.

- 6. Let X be a topological space, and let $A \subseteq X$.
 - (a) Show that A is closed if and only if $A = \overline{A}$. (c) Show that A is open if and only if A = Int(A).
 - (b) Show that $\overline{\overline{A}} = \overline{A}$. (d) Show that Int(Int(A)) = Int(A).
- 7. Let X be a topological space with basis \mathcal{B} , and $A \subseteq X$.
 - (a) Show that $x \in \overline{A}$ if and only if every **basis element** $B \in \mathcal{B}$ containing x intersects A.
 - (b) Show that $x \in \text{Int}(A)$ if and only if there exists a **basis element** $B \in \mathcal{B}$ with $x \in B \subseteq A$.
- 8. Let X be a topological space, and let $A \subseteq X$. Let A' be the set of all limits points of A. Prove that $\overline{A} = A \cup A'$. Conclude that a set A is closed if and only if it contains all of its limit points.
- 9. Bonus (Optional). Consider the standard topology on \mathbb{R} , and let \mathbb{R}^{ω} denote the product

$$\mathbb{R}^{\omega} = \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \cdots$$

of a countably infinite number of copies of \mathbb{R} . The space \mathbb{R}^{ω} has a topology given by the basis

$$\mathcal{B}_b = \{ U_1 \times U_2 \times U_3 \times \cdots \mid U_i \subseteq \mathbb{R} \text{ open for all } i \in \mathbb{N} \}.$$

(You do not need to verify that \mathcal{B}_b is basis). Show that there exist maps $f_i : \mathbb{R} \to \mathbb{R}$ for $i \in \mathbb{N}$ such that f_i is continuous for all i, but the map

$$f: \mathbb{R} \longrightarrow \mathbb{R}^{\omega}$$
$$x \longmapsto (f_1(x), f_2(x), f_3(x), \cdots)$$

is not continuous. In part for this reason, this is usually not the preferred topology on \mathbb{R}^{ω} .