
Math 590 Homework #5 Friday 8 February 2019

Recommended reading: Munkres Section 17.

Roughly similar content: Definitions, Examples, Properties subsections of the following
https://en.wikipedia.org/wiki/Interior_(topology), https://en.wikipedia.org/wiki/Closure_(topology),

https://en.wikipedia.org/wiki/Boundary_(topology), https://en.wikipedia.org/wiki/Hausdorff_space,

https://en.wikipedia.org/wiki/Limit_of_a_sequence#Topological_spaces

Warm-up questions

(These warm-up questions are optional, and won’t be graded.)

1. Consider the interval (0, 1] as a subset of R with the standard topology. Give a complete, rigorous proof
that its closure is [0, 1], its interior is (0, 1), its boundary is {0, 1}, and its set of limit points is [0, 1].

2. Consider R with the standard topology. Find examples of subsets A of R with the following properties.

(a) ∂A = ∅.

(b) ∂A 6= ∅, and ∂A ⊆ A.

(c) ∂A 6= ∅, and A ∩ ∂A = ∅.

(d) ∂A 6= ∅, and A = ∂A.

(e) A is a proper subset of ∂A.

(f) ∂(∂A) 6= ∂A.

3. Consider the following subsets of R
• R
• ∅

• {0, 1}
• [0,∞)

• (1, 2)

• [1, 2] ∪ [3,∞)

• (−∞, 0)

• (−∞, 0]

• N
• {−n | n ∈ N}

Find the interior, closures, boundaries, and limit points of these subsets . . .

(a) . . . when R has the topology T = {(a,∞) | a ∈ R} ∪ {∅} ∪ {R}.
(b) . . . when R has the cofinite topology.

(c) . . . when R has the cocountable topology.

(d) . . . when R has the topology T = {R} ∪ {U ⊆ R | 0 /∈ U}.

4. Let X be a topological space and A ⊆ X. Show that A = A ∪ ∂A = Int(A) ∪ ∂A. Conclude that A is
the disjoint union of Int(A) and ∂A.

5. (a) Consider R with the standard topology. Give a complete and rigorous proof that the sequence(
1
n

)
n∈N converges to 0.

(b) Consider the interval (0, 1) with the standard topology. Give a complete and rigorous proof that
the sequence

(
1
n

)
n∈N of point in (0, 1) does not converge to any element of (0, 1).

6. Suppose that X is a topological space, and that (an)n∈N is a sequence in X that converges to a∞ ∈ X.
Prove that any subsequence of (an)n∈N converges to a∞ ∈ X.

7. Show by example that the limit of a sequence of points in a topological space need not be unique.

8. Let X be a topological space and x ∈ X. Show that the constant sequence (x)n∈N converges to x.

9. A sequence (an)n∈N is called eventually constant if there is some N ∈ N so that an = aN for all n ≥ N .

(a) Let X be a set with the discrete topology. Show that the only convergent sequences are the sequences
that are eventually constant. What is their set of limits?

(b) Let X be a set with the indiscrete topology. Show that all sequences converge to every point in X.

10. Let X = {a, b, c, d} be a set endowed with the topology

T =
{
∅, {a}, {b}, {a, b}, {a, c}, {a, b, c}, {a, b, c, d}

}
.

Find the set of all limits of each of the following sequences.
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• d, d, d, d, d, . . .

• c, c, c, c, c, . . .

• a, a, a, a, a, . . .

• a, c, a, c, a, c, . . .

• a, b, c, d, a, b, c, d, . . .

• a, b, a, b, a, b, . . .

11. (a) Consider the following sequences of real numbers.

• 0, 0, 0, 0, · · · • 1, 1, 1, 1, · · · • 0, 1, 0, 1, · · · • (n)n∈N •
(
1
n

)
n∈N

Find the set of all limits for each of these sequences . . .

(b) . . . when R has the topology T = {(a,∞) | a ∈ R} ∪ {∅} ∪ {R}.
(c) . . . when R has the cofinite topology.

(d) . . . when R has the cocountable topology.

(e) . . . when R has the topology T = {R} ∪ {U ⊆ R | 0 /∈ U}.

12. (a) Let X be a Hausdorff topological space, and S ⊆ X. Prove the subspace topology on S is Hausdorff.

(b) Let X and Y be Hausdorff topological spaces. Prove the product topology on X × Y is Hausdorff.

(c) Let X be a totally ordered set. Show that the order topology on X is Hausdorff.

13. Let X = {a, b, c, d} with the topology

T = {∅, {a}, {a, b}, {c}, {a, c}, {a, b, c}, {a, b, d}, {a, b, c, d}}.

(a) Is X Hausdorff?

(b) Find the interior and closure of {a, c, d}.

Assignment questions

(Hand these questions in! Unless otherwise indicated, give a complete, rigorous justification for each solution.)

1. (Finite unions, intersections, and products of interiors and closures).

(a) Let X a topological space, with A,B ⊆ X. For each of the following, determine whether you can
replace the symbol � with ⊆,⊇,=, or none of the above. You should understand how to justify
your solution, but for this step, you only need to submit the final answer (⊆,⊇,=, or “none of the
above”).

(i) X \A � Int(X \A)

(ii) X \ Int(A) � X \A
(iii) Int(A ∪B) � Int(A) ∪ Int(B)

(iv) Int(A ∩B) � Int(A) ∩ Int(B)

(v) A ∪B � A ∪B

(vi) A ∩B � A ∩B

(b) Give a complete proof of your solution to part (a) (v).

(c) Give a counterexample to each instance in part (a) where equality fails.

(d) Prove or give a counterexample: If A ⊆ X, then ∂A = A \A.

(e) Prove or give a counterexample: If U ⊆ X is open, then U = Int(U).

(f) Let X and Y be topological spaces. Prove or disprove: if A is closed in X and B is closed in Y ,
then A×B is closed in X × Y . Determine in general the relationship between A×B and A×B.

2. (a) Prove the following.

Proposition (Equivalent definition of continuity). A function f : X → Y of topo-
logical spaces is continuous if and only if f(A) ⊆ f(A) for every subset A ⊆ X.

(b) Let f : X → Y be a continuous function of topological spaces. Let (an)n∈N be a sequence of
elements in X converging to a∞ ∈ X. Show that limn→∞ f(an) = f(a∞).
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3. Prove the following.

Proposition (Equivalent definition of Hausdorff). A topological space X is Hausdorff
if and only if the diagonal ∆ = {(x, x) | x ∈ X} is a closed subset of the product X ×X with
the product topology.

4. (a) Show that the continuous image of a Hausdorff topological space need not be Hausdorff. Specifically,
find a Hausdorff topological space X, and topological space Y that is not Hausdorff, and a continuous
surjective map f : X → Y .

(b) Let X and Y be topological spaces, and assume that Y is Hausdorff. Show that, if there exists a
continuous injective map f : X → Y , then X must also be Hausdorff.

(c) Let X and Y be topological spaces, and assume that Y is Hausdorff. Let A ⊆ X. Show that
the values of a continuous function X → Y on A are completely determined by its value on A.
Specifically, let f : X → Y and g : X → Y be continuous functions. Suppose that A ⊆ X is a
subset such that

f(a) = g(a) for all a ∈ A.

Prove that
f(x) = g(x) for all x ∈ A.

5. (The Zariski Topology). Fix n ∈ N, and let C[x1, . . . , xn] denote the set of polynomials in the
variables x1, . . . , xn with complex coefficients. For a subset of polynomials S ⊆ C[x1, . . . , xn], we denote
its vanishing set

V (S) = {(z1, . . . , zn) ∈ Cn | f(z1, . . . , zn) = 0 for all f ∈ S} ⊆ Cn.

In this problem, we will see that there is a topology on Cn, called the Zariski topology, whose closed
sets are exactly the sets V (S) for S ⊆ C[x1, . . . , xn]. This topology is a foundational construction in
algebraic geometry.

(a) Let {Si | i ∈ I} be a collection of subsets of C[x1, . . . , xn]. Show that V
(⋃

i∈I Si

)
=
⋂

i∈I V (Si).

(b) If S1, S2 ⊆ C[x1, . . . , xn], prove that V (S1 · S2) = V (S1) ∪ V (S2), where

S1 · S2 = {f · g | f ∈ S1, g ∈ S2}.

(c) Prove that the Zariski topology TZ = {U ⊆ Cn | Cn \ U = V (S) for some S ⊆ C[x1, . . . , xn]} is in
fact a topology on Cn.

(d) Determine whether points {(z1, . . . , zn)} ⊆ Cn are closed in the Zariski topology.

(e) Show that the subspace topology on the subset C ∼= {(z, 0, · · · , 0) | z ∈ C} ⊆ Cn coincides with the
Zariski topology on C (as defined by the polynomial ring C[x1]).

(f) Determine whether the Zariski topology on Cn is Hausdorff. Hint: Use part (e).

6. Bonus (Optional). Let X be a topological space. Consider the two functions closure and complement

Cl : A 7−→ A and Co : A 7−→ X \A

on the power set of X.

(a) Show that, starting with a fixed set A ⊆ X, you can form at most 14 sets by applying these two
operations successively.

(b) Find a subset A ⊆ R (with the standard topology) that achieves this maximum of 14 sets.
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