Recommended reading: Munkres Section 17.

Roughly similar content: Definitions, Examples, Properties subsections of the following https://en.wikipedia.org/wiki/Interior_(topology) https://en.wikipedia.org/wiki/Closure_(topology)
https://en.wikipedia.org/wiki/Boundary_(topology) https://en.wikipedia.org/wiki/Hausdorff_space,
https://en.wikipedia.org/wiki/Limit_of_a_sequence\#Topological_spaces

Warm-up questions

(These warm-up questions are optional, and won't be graded.)

1. Consider the interval $(0,1]$ as a subset of \mathbb{R} with the standard topology. Give a complete, rigorous proof that its closure is $[0,1]$, its interior is $(0,1)$, its boundary is $\{0,1\}$, and its set of limit points is $[0,1]$.
2. Consider \mathbb{R} with the standard topology. Find examples of subsets A of \mathbb{R} with the following properties.
(a) $\partial A=\varnothing$.
(c) $\partial A \neq \varnothing$, and $A \cap \partial A=\varnothing$.
(e) A is a proper subset of ∂A.
(b) $\partial A \neq \varnothing$, and $\partial A \subseteq A$.
(d) $\partial A \neq \varnothing$, and $A=\partial A$.
(f) $\partial(\partial A) \neq \partial A$.
3. Consider the following subsets of \mathbb{R}

- \mathbb{R}
- $\{0,1\}$
- $(1,2)$
- $(-\infty, 0)$
- \mathbb{N}
- \varnothing
- $[0, \infty)$
- $[1,2] \cup[3, \infty)$
- $(-\infty, 0]$
- $\{-n \mid n \in \mathbb{N}\}$

Find the interior, closures, boundaries, and limit points of these subsets...
(a) \ldots when \mathbb{R} has the topology $\mathcal{T}=\{(a, \infty) \mid a \in \mathbb{R}\} \cup\{\varnothing\} \cup\{\mathbb{R}\}$.
(b) ... when \mathbb{R} has the cofinite topology.
(c) ... when \mathbb{R} has the cocountable topology.
(d) \ldots when \mathbb{R} has the topology $\mathcal{T}=\{\mathbb{R}\} \cup\{U \subseteq \mathbb{R} \mid 0 \notin U\}$.
4. Let X be a topological space and $A \subseteq X$. Show that $\bar{A}=A \cup \partial A=\operatorname{Int}(A) \cup \partial A$. Conclude that \bar{A} is the disjoint union of $\operatorname{Int}(A)$ and ∂A.
5. (a) Consider \mathbb{R} with the standard topology. Give a complete and rigorous proof that the sequence $\left(\frac{1}{n}\right)_{n \in \mathbb{N}}$ converges to 0 .
(b) Consider the interval $(0,1)$ with the standard topology. Give a complete and rigorous proof that the sequence $\left(\frac{1}{n}\right)_{n \in \mathbb{N}}$ of point in $(0,1)$ does not converge to any element of $(0,1)$.
6. Suppose that X is a topological space, and that $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a sequence in X that converges to $a_{\infty} \in X$. Prove that any subsequence of $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges to $a_{\infty} \in X$.
7. Show by example that the limit of a sequence of points in a topological space need not be unique.
8. Let X be a topological space and $x \in X$. Show that the constant sequence $(x)_{n \in \mathbb{N}}$ converges to x.
9. A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is called eventually constant if there is some $N \in \mathbb{N}$ so that $a_{n}=a_{N}$ for all $n \geq N$.
(a) Let X be a set with the discrete topology. Show that the only convergent sequences are the sequences that are eventually constant. What is their set of limits?
(b) Let X be a set with the indiscrete topology. Show that all sequences converge to every point in X.
10. Let $X=\{a, b, c, d\}$ be a set endowed with the topology

$$
\mathcal{T}=\{\varnothing,\{a\},\{b\},\{a, b\},\{a, c\},\{a, b, c\},\{a, b, c, d\}\}
$$

Find the set of all limits of each of the following sequences.

- d, d, d, d, d, \ldots
- a, a, a, a, a, \ldots
- $a, b, c, d, a, b, c, d, \ldots$
- c, c, c, c, c, \ldots
- a, c, a, c, a, c, \ldots
- a, b, a, b, a, b, \ldots

11. (a) Consider the following sequences of real numbers.

- $0,0,0,0, \cdots$
- $1,1,1,1, \cdots$
- $0,1,0,1, \cdots$
- $(n)_{n \in \mathbb{N}}$
- $\left(\frac{1}{n}\right)_{n \in \mathbb{N}}$

Find the set of all limits for each of these sequences . .
(b) \ldots when \mathbb{R} has the topology $\mathcal{T}=\{(a, \infty) \mid a \in \mathbb{R}\} \cup\{\varnothing\} \cup\{\mathbb{R}\}$.
(c) ... when \mathbb{R} has the cofinite topology.
(d) ... when \mathbb{R} has the cocountable topology.
(e) \ldots when \mathbb{R} has the topology $\mathcal{T}=\{\mathbb{R}\} \cup\{U \subseteq \mathbb{R} \mid 0 \notin U\}$.
12. (a) Let X be a Hausdorff topological space, and $S \subseteq X$. Prove the subspace topology on S is Hausdorff.
(b) Let X and Y be Hausdorff topological spaces. Prove the product topology on $X \times Y$ is Hausdorff.
(c) Let X be a totally ordered set. Show that the order topology on X is Hausdorff.
13. Let $X=\{a, b, c, d\}$ with the topology

$$
\mathcal{T}=\{\varnothing,\{a\},\{a, b\},\{c\},\{a, c\},\{a, b, c\},\{a, b, d\},\{a, b, c, d\}\} .
$$

(a) Is X Hausdorff?
(b) Find the interior and closure of $\{a, c, d\}$.

Assignment questions

(Hand these questions in! Unless otherwise indicated, give a complete, rigorous justification for each solution.)

1. (Finite unions, intersections, and products of interiors and closures).
(a) Let X a topological space, with $A, B \subseteq X$. For each of the following, determine whether you can replace the symbol \square with $\subseteq, \supseteq,=$, or none of the above. You should understand how to justify your solution, but for this step, you only need to submit the final answer $(\subseteq, \supseteq,=$, or "none of the above").
(i) $X \backslash \bar{A} \square \operatorname{Int}(X \backslash A)$
(iv) $\operatorname{Int}(A \cap B) \square \operatorname{Int}(A) \cap \operatorname{Int}(B)$
(ii) $X \backslash \operatorname{Int}(A) \square \overline{X \backslash A}$
(v) $\overline{A \cup B} \square \bar{A} \cup \bar{B}$
(iii) $\operatorname{Int}(A \cup B)$$\operatorname{Int}(A) \cup \operatorname{Int}(B)$
(vi) $\overline{A \cap B} \square \bar{A} \cap \bar{B}$
(b) Give a complete proof of your solution to part (a) (v).
(c) Give a counterexample to each instance in part (a) where equality fails.
(d) Prove or give a counterexample: If $A \subseteq X$, then $\partial A=\bar{A} \backslash A$.
(e) Prove or give a counterexample: If $U \subseteq X$ is open, then $U=\operatorname{Int}(\bar{U})$.
(f) Let X and Y be topological spaces. Prove or disprove: if A is closed in X and B is closed in Y, then $A \times B$ is closed in $X \times Y$. Determine in general the relationship between $\bar{A} \times \bar{B}$ and $\overline{A \times B}$.
2. (a) Prove the following.

Proposition (Equivalent definition of continuity). A function $f: X \rightarrow Y$ of topological spaces is continuous if and only if $f(\bar{A}) \subseteq \overline{f(A)}$ for every subset $A \subseteq X$.
(b) Let $f: X \rightarrow Y$ be a continuous function of topological spaces. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of elements in X converging to $a_{\infty} \in X$. Show that $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f\left(a_{\infty}\right)$.
3. Prove the following.

Proposition (Equivalent definition of Hausdorff). A topological space X is Hausdorff if and only if the diagonal $\Delta=\{(x, x) \mid x \in X\}$ is a closed subset of the product $X \times X$ with the product topology.
4. (a) Show that the continuous image of a Hausdorff topological space need not be Hausdorff. Specifically, find a Hausdorff topological space X, and topological space Y that is not Hausdorff, and a continuous surjective map $f: X \rightarrow Y$.
(b) Let X and Y be topological spaces, and assume that Y is Hausdorff. Show that, if there exists a continuous injective map $f: X \rightarrow Y$, then X must also be Hausdorff.
(c) Let X and Y be topological spaces, and assume that Y is Hausdorff. Let $A \subseteq X$. Show that the values of a continuous function $X \rightarrow Y$ on \bar{A} are completely determined by its value on A. Specifically, let $f: X \rightarrow Y$ and $g: X \rightarrow Y$ be continuous functions. Suppose that $A \subseteq X$ is a subset such that

$$
f(a)=g(a) \quad \text { for all } a \in A
$$

Prove that

$$
f(x)=g(x) \quad \text { for all } x \in \bar{A}
$$

5. (The Zariski Topology). Fix $n \in \mathbb{N}$, and let $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ denote the set of polynomials in the variables x_{1}, \ldots, x_{n} with complex coefficients. For a subset of polynomials $S \subseteq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, we denote its vanishing set

$$
V(S)=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid f\left(z_{1}, \ldots, z_{n}\right)=0 \quad \text { for all } f \in S\right\} \subseteq \mathbb{C}^{n}
$$

In this problem, we will see that there is a topology on \mathbb{C}^{n}, called the Zariski topology, whose closed sets are exactly the sets $V(S)$ for $S \subseteq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. This topology is a foundational construction in algebraic geometry.
(a) Let $\left\{S_{i} \mid i \in I\right\}$ be a collection of subsets of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Show that $V\left(\bigcup_{i \in I} S_{i}\right)=\bigcap_{i \in I} V\left(S_{i}\right)$.
(b) If $S_{1}, S_{2} \subseteq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, prove that $V\left(S_{1} \cdot S_{2}\right)=V\left(S_{1}\right) \cup V\left(S_{2}\right)$, where

$$
S_{1} \cdot S_{2}=\left\{f \cdot g \mid f \in S_{1}, g \in S_{2}\right\}
$$

(c) Prove that the Zariski topology $\mathcal{T}_{Z}=\left\{U \subseteq \mathbb{C}^{n} \mid \mathbb{C}^{n} \backslash U=V(S)\right.$ for some $\left.S \subseteq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right\}$ is in fact a topology on \mathbb{C}^{n}.
(d) Determine whether points $\left\{\left(z_{1}, \ldots, z_{n}\right)\right\} \subseteq \mathbb{C}^{n}$ are closed in the Zariski topology.
(e) Show that the subspace topology on the subset $\mathbb{C} \cong\{(z, 0, \cdots, 0) \mid z \in \mathbb{C}\} \subseteq \mathbb{C}^{n}$ coincides with the Zariski topology on \mathbb{C} (as defined by the polynomial ring $\left.\mathbb{C}\left[x_{1}\right]\right)$.
(f) Determine whether the Zariski topology on \mathbb{C}^{n} is Hausdorff. Hint: Use part (e).
6. Bonus (Optional). Let X be a topological space. Consider the two functions closure and complement

$$
\mathrm{Cl}: A \longmapsto \bar{A} \quad \text { and } \quad \mathrm{Co}: A \longmapsto X \backslash A
$$

on the power set of X.
(a) Show that, starting with a fixed set $A \subseteq X$, you can form at most 14 sets by applying these two operations successively.
(b) Find a subset $A \subseteq \mathbb{R}$ (with the standard topology) that achieves this maximum of 14 sets.

