Recommended reading: Munkres Section 17.

Roughly similar content: Definitions, Examples, Properties subsections of the following https://en.wikipedia.org/wiki/Interior_(topology), https://en.wikipedia.org/wiki/Closure_(topology), https://en.wikipedia.org/wiki/Boundary_(topology), https://en.wikipedia.org/wiki/Hausdorff_space, https://en.wikipedia.org/wiki/Limit_of_a_sequence#Topological_spaces

Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Consider the interval (0, 1] as a subset of \mathbb{R} with the standard topology. Give a complete, rigorous proof that its closure is [0, 1], its interior is (0, 1), its boundary is $\{0, 1\}$, and its set of limit points is [0, 1].
- 2. Consider \mathbb{R} with the standard topology. Find examples of subsets A of \mathbb{R} with the following properties.
 - (a) $\partial A = \emptyset$. (b) $\partial A \neq \emptyset$, and $\partial A \subset A$. (c) $\partial A \neq \emptyset$, and $A \cap \partial A = \emptyset$. (c) $\partial A \neq \emptyset$, and $A \cap \partial A = \emptyset$. (d) $\partial A \neq \emptyset$, and $A = \partial A$. (e) A is a **proper** subset of ∂A . (f) $\partial(\partial A) \neq \partial A$.
- 3. Consider the following subsets of \mathbb{R}
 - \mathbb{R} {0,1} (1,2) (- ∞ ,0) \mathbb{N} • \varnothing • [0, ∞) • [1,2] \cup [3, ∞) • (- ∞ ,0] • {- $n \mid n \in \mathbb{N}$ }

Find the interior, closures, boundaries, and limit points of these subsets

- (a) ... when \mathbb{R} has the topology $\mathcal{T} = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\emptyset\} \cup \{\mathbb{R}\}.$
- (b) \dots when \mathbb{R} has the cofinite topology.
- (c) ... when \mathbb{R} has the cocountable topology.
- (d) ... when \mathbb{R} has the topology $\mathcal{T} = \{\mathbb{R}\} \cup \{U \subseteq \mathbb{R} \mid 0 \notin U\}.$
- 4. Let X be a topological space and $A \subseteq X$. Show that $\overline{A} = A \cup \partial A = \text{Int}(A) \cup \partial A$. Conclude that \overline{A} is the disjoint union of Int(A) and ∂A .
- 5. (a) Consider \mathbb{R} with the standard topology. Give a complete and rigorous proof that the sequence $\left(\frac{1}{n}\right)_{n\in\mathbb{N}}$ converges to 0.
 - (b) Consider the interval (0, 1) with the standard topology. Give a complete and rigorous proof that the sequence $\left(\frac{1}{n}\right)_{n \in \mathbb{N}}$ of point in (0, 1) does not converge to any element of (0, 1).
- 6. Suppose that X is a topological space, and that $(a_n)_{n \in \mathbb{N}}$ is a sequence in X that converges to $a_{\infty} \in X$. Prove that any subsequence of $(a_n)_{n \in \mathbb{N}}$ converges to $a_{\infty} \in X$.
- 7. Show by example that the limit of a sequence of points in a topological space need not be unique.
- 8. Let X be a topological space and $x \in X$. Show that the constant sequence $(x)_{n \in \mathbb{N}}$ converges to x.
- 9. A sequence $(a_n)_{n \in \mathbb{N}}$ is called *eventually constant* if there is some $N \in \mathbb{N}$ so that $a_n = a_N$ for all $n \geq N$.
 - (a) Let X be a set with the discrete topology. Show that the only convergent sequences are the sequences that are eventually constant. What is their set of limits?
 - (b) Let X be a set with the indiscrete topology. Show that all sequences converge to every point in X.

10. Let $X = \{a, b, c, d\}$ be a set endowed with the topology

 $\mathcal{T} = \Big\{ \varnothing, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, c, d\} \Big\}.$

Find the set of all limits of each of the following sequences.

- d, d, d, d, d, ...
 a, a, a, a, a, a, a, ...
 a, b, c, d, a, b, c, d, ...
 a, b, a, b, a, b, a, b, ...
- 11. (a) Consider the following sequences of real numbers.

•
$$0, 0, 0, 0, \cdots$$
 • $1, 1, 1, 1, \cdots$ • $0, 1, 0, 1, \cdots$ • $(n)_{n \in \mathbb{N}}$ • $(\frac{1}{n})_{n \in \mathbb{N}}$

Find the set of all limits for each of these sequences ...

(b) ... when \mathbb{R} has the topology $\mathcal{T} = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\emptyset\} \cup \{\mathbb{R}\}.$

- (c) \dots when \mathbb{R} has the cofinite topology.
- (d) \ldots when \mathbb{R} has the cocountable topology.
- (e) ... when \mathbb{R} has the topology $\mathcal{T} = \{\mathbb{R}\} \cup \{U \subseteq \mathbb{R} \mid 0 \notin U\}.$

12. (a) Let X be a Hausdorff topological space, and $S \subseteq X$. Prove the subspace topology on S is Hausdorff.

- (b) Let X and Y be Hausdorff topological spaces. Prove the product topology on $X \times Y$ is Hausdorff.
- (c) Let X be a totally ordered set. Show that the order topology on X is Hausdorff.

13. Let $X = \{a, b, c, d\}$ with the topology

$$\mathcal{T} = \{ \varnothing, \{a\}, \{a, b\}, \{c\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\} \}.$$

- (a) Is X Hausdorff?
- (b) Find the interior and closure of $\{a, c, d\}$.

Assignment questions

(Hand these questions in! Unless otherwise indicated, give a complete, rigorous justification for each solution.)

1. (Finite unions, intersections, and products of interiors and closures).

- (a) Let X a topological space, with $A, B \subseteq X$. For each of the following, determine whether you can replace the symbol \Box with $\subseteq, \supseteq, =$, or none of the above. You should understand how to justify your solution, but for this step, you only need to submit the final answer ($\subseteq, \supseteq, =$, or "none of the above").
 - (i) $X \setminus \overline{A} \Box \operatorname{Int}(X \setminus A)$ (iv) $\operatorname{Int}(A \cap B) \Box \operatorname{Int}(A) \cap \operatorname{Int}(B)$ (ii) $X \setminus \operatorname{Int}(A) \Box \overline{X \setminus A}$ (v) $\overline{A \cup B} \Box \overline{A} \cup \overline{B}$ (iii) $\operatorname{Int}(A \cup B) \Box \operatorname{Int}(A) \cup \operatorname{Int}(B)$ (v) $\overline{A \cap B} \Box \overline{A} \cap \overline{B}$
- (b) Give a complete proof of your solution to part (a) (v).
- (c) Give a counterexample to each instance in part (a) where equality fails.
- (d) Prove or give a counterexample: If $A \subseteq X$, then $\partial A = \overline{A} \setminus A$.
- (e) Prove or give a counterexample: If $U \subseteq X$ is open, then $U = \text{Int}(\overline{U})$.
- (f) Let X and Y be topological spaces. Prove or disprove: if A is closed in X and B is closed in Y, then $A \times B$ is closed in $X \times Y$. Determine in general the relationship between $\overline{A} \times \overline{B}$ and $\overline{A \times B}$.
- 2. (a) Prove the following.

Proposition (Equivalent definition of continuity). A function $f : X \to Y$ of topological spaces is continuous if and only if $f(\overline{A}) \subseteq \overline{f(A)}$ for every subset $A \subseteq X$.

(b) Let $f : X \to Y$ be a continuous function of topological spaces. Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of elements in X converging to $a_{\infty} \in X$. Show that $\lim_{n \to \infty} f(a_n) = f(a_{\infty})$.

3. Prove the following.

Proposition (Equivalent definition of Hausdorff). A topological space X is Hausdorff if and only if the diagonal $\Delta = \{(x, x) \mid x \in X\}$ is a closed subset of the product $X \times X$ with the product topology.

- 4. (a) Show that the continuous image of a Hausdorff topological space need not be Hausdorff. Specifically, find a Hausdorff topological space X, and topological space Y that is not Hausdorff, and a continuous surjective map $f: X \to Y$.
 - (b) Let X and Y be topological spaces, and assume that Y is Hausdorff. Show that, if there exists a continuous injective map $f: X \to Y$, then X must also be Hausdorff.
 - (c) Let X and Y be topological spaces, and assume that Y is Hausdorff. Let $A \subseteq X$. Show that the values of a continuous function $X \to Y$ on \overline{A} are completely determined by its value on A. Specifically, let $f: X \to Y$ and $g: X \to Y$ be continuous functions. Suppose that $A \subseteq X$ is a subset such that

$$f(a) = g(a)$$
 for all $a \in A$.

Prove that

$$f(x) = g(x)$$
 for all $x \in \overline{A}$.

5. (The Zariski Topology). Fix $n \in \mathbb{N}$, and let $\mathbb{C}[x_1, \ldots, x_n]$ denote the set of polynomials in the variables x_1, \ldots, x_n with complex coefficients. For a subset of polynomials $S \subseteq \mathbb{C}[x_1, \ldots, x_n]$, we denote its vanishing set

$$V(S) = \{(z_1, \dots, z_n) \in \mathbb{C}^n \mid f(z_1, \dots, z_n) = 0 \text{ for all } f \in S\} \subseteq \mathbb{C}^n.$$

In this problem, we will see that there is a topology on \mathbb{C}^n , called the *Zariski topology*, whose closed sets are exactly the sets V(S) for $S \subseteq \mathbb{C}[x_1, \ldots, x_n]$. This topology is a foundational construction in algebraic geometry.

- (a) Let $\{S_i \mid i \in I\}$ be a collection of subsets of $\mathbb{C}[x_1, \ldots, x_n]$. Show that $V(\bigcup_{i \in I} S_i) = \bigcap_{i \in I} V(S_i)$.
- (b) If $S_1, S_2 \subseteq \mathbb{C}[x_1, \dots, x_n]$, prove that $V(S_1 \cdot S_2) = V(S_1) \cup V(S_2)$, where

$$S_1 \cdot S_2 = \{ f \cdot g \mid f \in S_1, \ g \in S_2 \}.$$

- (c) Prove that the Zariski topology $\mathcal{T}_Z = \{U \subseteq \mathbb{C}^n \mid \mathbb{C}^n \setminus U = V(S) \text{ for some } S \subseteq \mathbb{C}[x_1, \dots, x_n]\}$ is in fact a topology on \mathbb{C}^n .
- (d) Determine whether points $\{(z_1, \ldots, z_n)\} \subseteq \mathbb{C}^n$ are closed in the Zariski topology.
- (e) Show that the subspace topology on the subset $\mathbb{C} \cong \{(z, 0, \dots, 0) \mid z \in \mathbb{C}\} \subseteq \mathbb{C}^n$ coincides with the Zariski topology on \mathbb{C} (as defined by the polynomial ring $\mathbb{C}[x_1]$).
- (f) Determine whether the Zariski topology on \mathbb{C}^n is Hausdorff. *Hint:* Use part (e).
- 6. Bonus (Optional). Let X be a topological space. Consider the two functions closure and complement

$$\operatorname{Cl}: A \longmapsto \overline{A}$$
 and $\operatorname{Co}: A \longmapsto X \setminus A$

on the power set of X.

- (a) Show that, starting with a fixed set $A \subseteq X$, you can form at most 14 sets by applying these two operations successively.
- (b) Find a subset $A \subseteq \mathbb{R}$ (with the standard topology) that achieves this maximum of 14 sets.