Recommended reading: Munkres Section 17, 18, 19.

Roughly similar content: Ch. 4.2 & 9.2, "Topology without tears" http://www.topologywithouttears.net/topbook.pdf

Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Which of the following topologies on \mathbb{R} are Hausdorff? Which satisfy the T_1 axiom (Assignment problem # 1)?
 - the standard topology
 - the discrete topology
 - the indiscrete topology
 - $\{(a,\infty) \mid a \in \mathbb{R}\} \cup \{\emptyset\} \cup \{\mathbb{R}\}$
 - topology generated by $\{[a,b) \mid a,b \in \mathbb{R}\}$
- $\bullet \ \{U \mid 1 \in U\} \cup \{\varnothing\}$
- $\{U \mid 1 \notin U\} \cup \{\mathbb{R}\}$
- the cofinite topology
- the cocountable topology
- 2. (a) Give an example of a continuous, invertible map $f: X \to Y$ of topological spaces whose inverse f^{-1} is not continuous.
 - (b) Let $f: X \to Y$ be a bijection. Show that f^{-1} is continuous if and only if f is open.
- 3. Let $f: X \to Y$ be a homeomorphism of topological space (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) . Show that the map $U \longmapsto f(U)$ is a well-defined bijection between the open sets \mathcal{T}_X in X and the open sets \mathcal{T}_Y in Y.
- 4. Let $f: X \to Y$ be a function of topological spaces.
 - (a) Let $A \subseteq X$ be a subset. Show that, if f is continuous, then the restriction of f to A

$$f|_A:A\longrightarrow Y$$

 $x\longmapsto f(x)$

is continuous (with respect to the topology on Y and the subspace topology on A.)

(b) Suppose that Z is a subset of Y containing f(X). Show that f is continuous if and only if the function

$$X \longrightarrow Z$$
$$x \longmapsto f(x)$$

is continuous (with respect to the topology on X and the subspace topology on Z).

- 5. (a) Let $f: X \to Y$ be a homeomorphism. Show that $f^{-1}: Y \to X$ is also a homeomorphism.
 - (b) Let $f: X \to Y$ and $g: Y \to Z$ be homeomorphisms. Show that $g \circ f: X \to Z$ is a homeomorphism.
 - (c) Consider any set of topological spaces. Show that the relation

$$X \sim Y \iff X \text{ is homeomorphic to } Y$$

is an equivalence relation on this set.

- 6. Let X and Y be homeomorphic topological spaces.
 - (a) Show that X has the discrete topology if and only if Y does.
 - (b) Show that X has the indiscrete topology if and only if Y does.
 - (c) Show that X is Hausdorff if and only if Y is.
 - (d) Show that X is a T_1 -space if and only if Y is.

7. Let X_1, X_2 , and X_3 be topological spaces. Show that there are homeomorphisms

$$((X_1 \times X_2) \times X_3) \cong (X_1 \times (X_2 \times X_3)) \cong (X_1 \times X_2 \times X_3).$$

- 8. (a) Let X be a topological space, and let $A \subseteq X$. View A as a topological space with the subspace topology. Show that the inclusion $A \to X$ is an embedding.
 - (b) Let X, Y be topological spaces. Fix $x_0 \in X$ and fix $y_0 \in Y$. Show that the following maps are embeddings.

$$X \longrightarrow X \times Y$$
 $Y \longrightarrow X \times Y$ $y \longmapsto (x_0, y)$

9. Determine whether the following functions are continuous, and whether they are homeomorphisms. All sets are subspaces of \mathbb{R} with the standard topology.

(a)
$$f: (-1,1) \longrightarrow [0,1)$$
 (b) $f: (-1,1) \longrightarrow \mathbb{R}$ (c) $f: \mathbb{R} \longrightarrow [-1,1]$ (d) $f: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto |x|$ $x \longmapsto |x|$ $x \longmapsto \sin(x)$ $x \longmapsto x^3$

- 10. (a) Let $\{X_i\}_{i\in I}$ be a family of topological spaces. Verify that the box topology on $\prod_{i\in I} X_i$ is a topology.
 - (b) Verify that the box topology is finer than (or equal to) the product topology.
 - (c) Verify that the box and product topology are the same when I is finite.

Assignment questions

(Hand these questions in! Unless otherwise indicated, give a complete, rigorous justification for each solution.)

1. **Definition (The** T_1 **Axiom).** A topological space X is called a T_1 -space if, for every pair of distinct points $x, y \in X$, there is a neighbourhood U_x of x and a neighbourhood U_y of y such that $y \notin U_x$ and $x \notin U_y$. We call this condition the T_1 axiom.

Note that the T_1 axiom is weaker than the Hausdorff condition, since we do not require the neighbourhoods U_x and U_y to be disjoint.

- (a) Give an example (with proof) of a topological space that is a T_1 -space but is not Hausdorff.
- (b) Prove the following proposition.

Proposition (Equivalent statement of the T_1 Axiom). Let X be a topological space. Show that X is a T_1 -space if and only if the singleton set $\{x\}$ is closed for every $x \in X$.

- (c) Let X be a **finite** set, and suppose that \mathcal{T} is a topology on X satisfying the T_1 axiom. Show that \mathcal{T} is the discrete topology.
- (d) Prove the following proposition.

Proposition (Limit points in T_1 -spaces). Let X be a T_1 -space, and let $A \subseteq X$. Then x is a limit point of A if and only if every neighbourhood of x contains infinitely many points of A.

- (e) Let X be a T_1 -space, and let $A \subseteq X$. Show that the set A' of limit points of A is closed.
- (f) Show by example that, for a subset A of a general topological space, A' need not be closed.
- 2. Let $f: X \to Y$ be a function of topological spaces.
 - (a) Suppose that X can be written as a union of **open** subsets $X = \bigcup_{i \in I} U_i$. Suppose moreover that for each $i \in I$, the restriction $f|_{U_i} : U_i \to Y$ of f to U_i is continuous with respect to the subspace topology on U_i . Show that f is continuous.

- (b) Suppose that $X = A \cup B$ for **closed** sets A and B. Show that, if $f|_A : A \to Y$ and $f|_B : B \to Y$ are both continuous, then f is continuous.
- (c) Let Y be an ordered set with the order topology. Let $f, g: X \to Y$ be continuous functions. Show that the "minimum" function m(x) is continuous:

$$m: X \to Y$$

$$m(x) = \min\{f(x), g(x)\}.$$

3. We saw on Quiz #2 that a function $Z \to X \times Y$ is continuous if and only if its coordinate functions are continuous. In this question, we will consider continuity of functions $X \times Y \to Z$.

Definition (Continuity in each variable). Let X, Y, Z be topological spaces, and $X \times Y$ the topological space with the product topology. Let $F: X \times Y \to Z$ be a function. Then F is *continuous in each variable separately* if for each $y_0 \in Y$, and for each $x_0 \in X$, the following maps are continuous.

$$X \longrightarrow Z$$
 $Y \longrightarrow Z$ $y \longmapsto F(y, x_0)$.

- (a) Show that, if F is continuous, then it is continuous in each variable.
- (b) Show that the converse is false. Hint: Consider the function $F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ given by

$$F(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

You can use the following result from real analysis without proof. Here \mathbb{R} has the standard topology.

Lemma. Let $F : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a function, and fix a point (x_0, y_0) in $\mathbb{R} \times \mathbb{R}$. If F is continuous at (x_0, y_0) , then for any parameterized line

$$x(t) = x_0 + at$$
, $y(t) = y_0 + bt$ $(a, b \in \mathbb{R} \text{ any constants})$,

the limit $\lim_{t\to 0} F(x(t), y(t))$ exists and equals $F(x_0, y_0)$.

4. Let $f: X \to Y$ be a continuous function of topological spaces. Recall that the graph G of f is the subset

$$G = \{(x, f(x)) \mid x \in X\} \subset X \times Y.$$

Then G is a topological space as a subspace of the space $X \times Y$ with the product topology. Show that X is homeomorphic to G.

- 5. Product and box topologies. Let $\{X_i\}_{i\in I}$ be a collection of topological spaces indexed by a set I.
 - (a) Verify that the product topology on $\prod_{i \in I} X_i$ is in fact a topology.
 - (b) Let $\pi_j: \prod_{i\in I} X_i \to X_j$ denote the projection onto the j^{th} coordinate. Show that this map is continuous with respect to the product topology, and moreover that the product topology is the coarsest topology on $\prod_{i\in I} X_i$ making the projection maps π_j continuous for all $j\in I$.
 - (c) Let $f: X \to \prod_{i \in I} X_i$ be given by the equation $f(x) = \left(f_i(x)\right)_{i \in I}$ with functions $f_i: X \to X_i$. Show that f is continuous (with respect to the product topology) if and only if each coordinate function f_i is continuous.
- 6. Bonus (Optional). Prove that the interval $I = (0,1) \subseteq \mathbb{R}$ is not homeomorphic to the circle

$$S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} \subseteq \mathbb{R}^2.$$