Recommended reading: Munkres Section 19, 20

Roughly similar content: Ch. 9.2, 6,1 "Topology without tears" http://www.topologywithouttears.net/topbook.pdf

Warm-up questions

(These warm-up questions are optional, and won't be graded.)

1. Carefully explain why the following map is continuous and injective, but not an embedding.

$$f: [0,1) \longrightarrow \mathbb{R}$$
$$x \longmapsto (\cos(2\pi x), \sin(2\pi x)).$$

- 2. Show that all parts of Assignment Problem #1 also hold when the product topology on $\prod_{i \in I} X_i$ and its subspaces is replaced by the box topology on $\prod_{i \in I} X_i$ and its subspaces.
- 3. Let $\{X_i\}_{i \in I}$ and $\{Y_i\}_{i \in I}$ be families of nonempty topological spaces. Assume for each *i* that $f_i : X_i \to Y_i$ is a function. Let $\prod f_i$ denote the function

$$\prod f_i : \prod_{i \in I} X_i \longmapsto \prod_{i \in I} Y_i$$
$$(x_i)_{i \in I} \longmapsto (f_i(x_i))_{i \in I}$$

Show that the following hold when $\prod_{i \in I} X_i$ and $\prod_{i \in I} Y_i$ are both given the product topology, and when they are both given the box topology.

- (a) $\prod f_i$ is continuous if and only if f_i is continuous for each *i*.
- (b) $\prod f_i$ is injective if and only if f_i is injective for each i.
- (c) $\prod f_i$ is surjective if and only if f_i is surjective for each *i*.
- (d) $\prod f_i$ is bijective if and only if f_i is bijective for each *i*.
- (e) $\prod f_i$ is open if and only if f_i is open for each *i*.
- (f) $\prod f_i$ is a homeomorphism if and only if f_i is a homeomorphism for each *i*.

4. Let $X = \{a, b, c\}$. Which of the following functions define a metric on X?

(a)

$$\begin{array}{ll} d(a,a) = d(b,b) = d(c,c) = 0 \\ d(a,b) = d(b,a) = 1 \\ d(a,c) = d(c,a) = 2 \\ d(b,c) = d(c,b) = 3 \end{array} \qquad \begin{array}{ll} d(a,a) = d(b,b) = d(c,c) = 0 \\ d(a,b) = d(b,a) = 1 \\ d(a,b) = d(b,a) = 1 \\ d(a,c) = d(c,a) = 2 \\ d(b,c) = d(c,b) = 3 \end{array}$$

(b)

- 5. (a) We proved that, for continuous functions from $\mathbb{R} \to \mathbb{R}$, that the open-set definition of continuity is equivalent to the ϵ - δ definition. Verify that these definitions are equivalent for functions of arbitrary metric space $X \to Y$.
 - (b) You proved that, for sequences in \mathbb{R} , that the open-set definition of convergence is equivalent to the ϵ -N definition of convergence. Verify that these definitions are equivalent for sequences in an arbitrary metric space X.
- 6. Let (X, d) be a metric space. Show that the set $\{B_r(x) \mid x \in X, r \in \mathbb{Q}\}$ of balls with **rational** radius generate the topology induced by d.

- 7. Let (X, d) be a metric space.
 - (a) Is \emptyset a bounded set?
 - (b) Show that any finite subset of a metric space is bounded.
- 8. Let (X, d) be a metric space, and $A \subseteq X$. Show that the following conditions are equivalent (and so can each be taken as the definition of *boundedness* for A.)
 - (i) There is some $M \in \mathbb{R}$ such that d(x, y) < M for every $x, y \in A$.
 - (ii) There is some $a \in A$ and $R \in \mathbb{R}$ such that $A \subseteq B_R(a)$.
 - (iii) For every $a \in A$, there is some $R_a \in \mathbb{R}$ such that $A \subseteq B_{R_a}(a)$.

Assignment questions

(Hand these questions in! Unless otherwise indicated, give a complete, rigorous justification for each solution.)

- 1. (The product topology). Let $\{X_i\}_{i \in I}$ be a family of topological spaces.
 - (a) For each i, let $A_i \subseteq X_i$. Consider the following two ways that we can topologize the product $A = \prod_{i \in I} A_i$. The first is to take the subspace topology on A_i for each i, and then the product topology on A. The second is to view A as subspace of the product $\prod_{i \in I} X_i$ with the product topology. Prove that these two topologies on A are equal.
 - (b) Suppose that X_i is Hausdorff for all *i*. Prove that the both the box topology and product topology on the product $\prod_{i \in I} X_i$ are Hausdorff.

(c) For each *i*, let $A_i \subseteq X_i$. Consider $\prod_{i \in I} X_i$ with the product topology. Show that $\prod_{i \in I} \overline{A_i} = \overline{\prod_{i \in I} A_i}$. *Remark*: The analogous statements hold for the box topology on $\prod_{i \in I} X_i$.

- 2. Let $\mathbb{R}^{\omega} = \prod_{\mathbb{N}} \mathbb{R}$ (so an element of \mathbb{R}^{ω} is precisely a sequence $(a_n)_{n \in \mathbb{N}}$ of real numbers.)
 - (a) Let $X \subseteq \mathbb{R}^{\omega}$ be the subset of all sequences $(a_n)_{n \in \mathbb{N}}$ that are eventually zero, that is,

 $X = \{(a_n)_{n \in \mathbb{N}} \mid a_n = 0 \text{ for all but finitely many values of } n \}.$

Find the closure of X in the box topology, and in the product topology, on \mathbb{R}^{ω} .

(b) Determine whether the following function is continuous in with respect to the box topology, and with respect to the product topology.

$$\begin{aligned} f: \mathbb{R} &\longrightarrow \mathbb{R}^{\omega} \\ t &\longmapsto (t, \frac{1}{2}t, \frac{1}{3}t, \dots,) \end{aligned}$$

(c) State all limits of the following sequences with respect to the box topology, and with respect to the product topology. **No justification needed.**

(i)

(ii)

$\mathbf{a_1} = (1, 0, 0, 0, \ldots)$	$\mathbf{b_1} = (1, 0, 0, 0, \ldots)$
$\mathbf{a_2} = (\frac{1}{2}, 0, 0, 0, \dots)$	$\mathbf{b_2} = (\frac{1}{2}, \frac{1}{2}, 0, 0, \ldots)$
$\mathbf{a_3} = (\frac{1}{3}, 0, 0, 0, \dots)$	$\mathbf{b_3} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, \ldots)$
$\mathbf{a_4} = (\frac{1}{4}, 0, 0, 0, \ldots)$	$\mathbf{b_4} = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, 0 \dots)$
:	:
	-

3. (a) Let (X, d) be a metric space. Prove that the basis for the metric topology $\mathcal{B} = \{B_r(x) \mid x \in X, r > 0\}$ is in fact a basis.

- (b) Let (X, d) be a metric space. Prove that $U \subseteq X$ is open in the metric topology if and only if, for all $x \in U$, there is some $\epsilon > 0$ so that $B_{\epsilon}(x) \subseteq U$.
- (c) Determine whether the following functions define metrics on the corresponding sets.

d

(i) Let $X = \mathbb{R}$. Define

$$d: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$$
$$d(x, y) = (x - y)^2$$

(ii) Let X be any set. Define

$$\begin{array}{c} : X \times X \longrightarrow \mathbb{R} \\ d(x,y) = \left\{ \begin{array}{cc} 0 & x = y \\ 1 & x \neq y \end{array} \right. \end{array}$$

(d) **Definition (Bounded subset of a metric space).** Let (X, d) be a metric space, and $A \subseteq X$. Then A is *bounded* if there exists some $M \in \mathbb{R}$ such that d(x, y) < M for all $x, y \in A$.

Suppose that (X, d) is a metric space. Show that there exists some metric \tilde{d} on X that induces the same topology on X as d, (ie, d and \tilde{d} are equivalent), but such that X is bounded with respect to the metric \tilde{d} .

- 4. (a) Let (X, d) be a metric space. Prove that a subset $C \subseteq X$ is closed if and only if it satisfies the following property: given any convergent sequence $(a_n)_{n \in \mathbb{N}}$ of points in C, its limit a_{∞} is contained in C.
 - (b) Show that the above equivalence does not hold for subsets of arbitrary topological spaces.
 - (c) **Definition (Sequential continuity).** A function $f : X \to Y$ of topological spaces is sequentially continuous if, for every convergent sequence $(a_n)_{n \in \mathbb{N}}$ in X, then the sequence $(f(a_n))_{n \in \mathbb{N}}$ in Y converges, and

$$\lim_{n \to \infty} f(a_n) = f\left(\lim_{n \to \infty} a_n\right).$$

Prove the following result.

Proposition. Let $f : X \to Y$ be a function of topological spaces, and assume that X is metrizable. Show that f is continuous if and only if it is sequentially continuous.

5. Fix integers $n, p \ge 1$. Consider the following function

$$d_p : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$$
$$(\mathbf{x}, \mathbf{y}) \longmapsto \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}}.$$

It is a fact that you do not need to prove (but which follows from *Minkowski's inequality*, https: //en.wikipedia.org/wiki/Minkowski_inequality) that d_p is a metric on \mathbb{R}^n . Further define the function

$$d_{\infty} : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$$
$$(\mathbf{x}, \mathbf{y}) \longmapsto \max_{i=1, \dots, n} |x_i - y_i|.$$

- (a) Show that d_{∞} is a metric.
- (b) Sketch the unit balls $B_1(\mathbf{0})$ in (\mathbb{R}^2, d_p) for $p = 1, 2, \infty$.
- (c) Show that metrics d_p are equivalent metrics on \mathbb{R}^n for all $p \in \mathbb{N} \cup \{\infty\}$. In particular, they are all equivalent to the standard Euclidean metric d_2 .
- (d) Show that these metrics are equivalent to the product topology on \mathbb{R}^n , as a product of copies of \mathbb{R} with the usual topology.