
Math 590 Homework #8 Friday 1 March 2019

Recommended reading: Munkres Section 20, 21, 22.

Roughly similar content: (Notes by Bob Gardner)
Metric Topology http://faculty.etsu.edu/gardnerr/5357/notes/Munkres-20.pdf,

http://faculty.etsu.edu/gardnerr/5357/notes/Munkres-21.pdf

Quotient Topology https://faculty.etsu.edu/gardnerr/5210/notes/Munkres-22.pdf

Warm-up questions

(These warm-up questions are optional, and won’t be graded.)

1. (Real analysis review).

(a) Show that addition, subtraction, and multiplication are continuous functions R×R→ R (with the
standard topologies). Show that the quotient operation is a continuous function R× (R\{0})→ R.

(b) Let f, g : X → R be continuous functions. Conclude that the functions (f + g), (f − g) and (f · g)
are continuous. If g(x) 6= 0 for all x ∈ X, conclude that the function f/g is continuous.

2. Let (X, d) be a metric space, and let Y ⊆ X be a subset. Show that the restriction d|Y×Y of d to
Y × Y ⊆ X × X defines a metric on Y . Conclude that any subset of a metric space inherits a metric
space structure.

3. Let (fn)n∈N be a sequence of functions from a topo-
logical space X to a metric space Y . See Assign-
ment Problem # 3 for the definitions of pointwise
and uniform convergence.

(a) Show that uniform convergence implies point-
wise convergence.

(b) Use the following picture of functions f1, f2,
f3, and f∞ to explain the concept of uniform
convergence of functions R → R, and how it
differs from pointwise convergence.

4. (a) Let X be a set. Recall that the discrete metric on X is the metric d(x, y) =

{
0, x = y
1, x 6= y

for all

x, y ∈ X. Show that this metric induces the discrete topology on X.

(b) Consider N ⊆ R. Show that the usual Euclidean metric on N induces the discrete topology.

(c) Consider A = { 1n | n ∈ N} ⊆ R. Show that the Euclidean metric on A induces the discrete topology.

(d) For a metric space (X, d), consider the set Sd = {d(x, y) | x, y ∈ X}. Conclude that it is possible
to have two equivalent metrics d and d̃ where Sd is bounded above and Sd̃ is not; and similiary it

is possible to have two equivalent metrics d and d̃ where Sd is bounded below and Sd̃ is not.

5. In class we proved that the box topology on Rω is not metrizable. Explain where our proof would fail
for the product topology on Rω (which is, in fact, metrizable).

6. Let X be a topological space, A a set, and p : X → A a surjective map. Recall that we defined the
quotient topology on A to be the T = {U ⊆ A | p−1(A) is open in X}. Verify that T is in fact a topology.

7. Verify that the composite of quotient maps is a quotient map.

8. Show that any quotient space of a discrete topological space has the discrete topology, and that any
quotient space of an indiscrete topological space has the indiscrete topology.
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9. (a) Let f : X → Y be a continuous surjective map of topological spaces. Show that if f is either open or
closed, then f is a quotient map. We will see in Assignment Problem #4 part (b) that the converse
statements do not hold.

(b) Give an example of a map X → Y of topological spaces that is open but not closed, and an example
of map that is closed but not open.

10. Consider the following functions from R to the set X = {a, b, c}. For each function, find the quotient
topology on X induced by the function.

f1 : R→ {a, b, c} f2 : R→ {a, b, c} f3 : R→ {a, b, c}

f1(x) =

 a, x ∈ (−∞, 0)
b, x = 0,
c, x ∈ (0,∞)

f2(x) =

 a, x = 0
b, x = 1
c, x 6= 0, 1

f3(x) =

 a, x ∈ (−∞, 0)
b, x = [0, 1)
c, x ∈ [1,∞)

Assignment questions

(Hand these questions in! Unless otherwise indicated, give a complete, rigorous justification for each solution.)

1. Let (xn)n∈N be a sequence of points in the product space
∏

i∈I Xi.

(a) Show that (xn)n∈N converges to a point x∞ ∈
∏

i∈I Xi in the product topology if and only if, for
every i ∈ I, the sequence (πi(xn))n∈N in Xi converges to the point πi(x∞) in Xi.

(b) Prove or disprove the same statement for the box topology on
∏

i∈I Xi.

2. Let (X, d) be a metric space, and let Y ⊆ X be a subset. In Warm-Up Problem #2 (which you should
check but do not need to write up), we saw that the restriction d|Y×Y of d to points in Y defines a
metric on Y . There are now two ways we can define a topology on Y : as the topology induced by the
restriction of the metric d to Y , or as a subspace of X with the topology induced by d. Verify that these
two topologies are equal.

3. Definition (Pointwise and Uniform Convergence). Let X be a topological space, and
(Y, d) a metric space. Let (fn)n∈N be a sequence of functions fn : X → Y .

• Then the sequence (fn)n∈N converges at a point x ∈ X if the sequence (fn(x))n∈N of points
in Y converges.

• The sequence (fn)n∈N converges pointwise to a function f∞ : X → Y if for every point
x ∈ X the sequence (fn(x))n∈N of points in Y converges to the point f∞(x) ∈ Y .

• The sequence (fn)n∈N converges uniformly to a function f∞ : X → Y if for every ε > 0
there is some N ∈ N so that d

(
fn(x), f∞(x)

)
< ε for every n ≥ N and x ∈ X.

In other words, if the sequence (fn)n∈N converges pointwise to f∞, then for each ε > 0 the choice of N
may depend on the point x ∈ X. To converge uniformly to f∞, there must exist a choice of N that is
independent of the point x.

(a) Let (fn)n∈N be a sequence of continuous func-
tions from a topological space X to a metric
space Y . Suppose that this sequence converges
uniformly to a function f∞ : X → Y . Show that
f∞ is continuous.

(b) Consider the sequence of functions (fn)n∈N from
[0, 1] to [0, 1] (with the usual metric) defined by
fn(x) = xn. Show that this sequence converges
pointwise, but conclude from part (a) that it does
not converge uniformly. fn(x) = xn
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(c) Definition (The uniform metric on RI). Given an index set I, define the uniform
metric on RI as follows. For points a = (ai)i∈I and b = (bi)i∈I , let

d(a,b) = sup
i∈I

{
min{|ai − bi|, 1}

}
.

(You do not need to verify that this is a metric). The topology induced by d is called the
uniform topology.

Prove that the uniform topology is finer than (or equal to) the product topology, and coarser than
(or equal to) the box topology on RI .

(d) Consider a sequence fn : X → R of functions from a topological space X to R. We can view
these functions as elements of the product space RX . Prove that the sequence (fn)n∈N converges
uniformly if and only if it converges as a sequence of elements in RX with the uniform topology.

4. (a) Let X be a topological space. Let p : X → Y be a surjective map to a set Y , and endow Y with
the quotient topology induced by p. Show that C ⊆ Y is closed in Y if and only if p−1(C) is closed
in X.

(b) Let π1 : R × R be projection onto the first factor. Consider the resutriction π1|A of π1 onto the
subspace A = {(x, y) | x ≥ 0 and/or y = 0}. Show that π1|A is a quotient map, but that it is
neither open nor closed.

(c) Let p : X → Y be a quotient map of topological spaces. Show by example that the restriction of p
to a subspace A ⊆ X need not give a quotient map from A to p(A).

(d) Prove the following result.

Theorem (Restrictions of quotient maps). Let p : X → Y be a quotient map of
topological spaces. If A ⊆ X is an open subset that is saturated with respect to p, then
the restriction of p to A defines a quotient map from A to p(A).

Remark: A similar argument shows that, if A is closed, then p|A is a quotient map.

5. Consider the topology on R generated by the basis

{(a, b) | a, b ∈ R} ∪ {(a, b) \K | a, b ∈ R}, K =

{
1

n

∣∣∣∣ n ∈ N
}
.

This is called the K-topology on R. Let Y be the quotient space obtained from R by identifying all
elements of K to a single point, and let p : R→ Y be the quotient map.

(a) Show that Y is a T1-space, but isn’t Hausdorff. Conclude in particular from Homework 5 Problem
#3 that the diagonal is not closed in Y × Y .

(b) Show that the product map R× R→ Y × Y is not a quotient map.

This exercise shows that the product of quotient maps need not be a quotient map.

6. Bonus (Optional).

Definition (Topological group). A topological group is a topological space that is also a
group, such that the mutliplication and inversion maps are continuous:

G×G→ G G→ G

(g, h) 7→ gh g 7→ g−1.

(a) Prove that any open subgroup H of G is also closed.

(b) Suppose H ⊆ G is a subgroup. Show that its topological closure H is also a subgroup.

(c) Suppose that H ⊆ G is a normal subgroup. Show that the quotient topology on the quotient group
G/H makes it a topological group.

(d) Show that G/H is Hausdorff if and only if H is closed.
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