Recommended reading: Munkres Section 20, 21, 22.

Roughly similar content: (Notes by Bob Gardner) Metric Topology http://faculty.etsu.edu/gardnerr/5357/notes/Munkres-20.pdf, http://faculty.etsu.edu/gardnerr/5357/notes/Munkres-21.pdf Quotient Topology https://faculty.etsu.edu/gardnerr/5210/notes/Munkres-22.pdf

Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. (Real analysis review).
 - (a) Show that addition, subtraction, and multiplication are continuous functions $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ (with the standard topologies). Show that the quotient operation is a continuous function $\mathbb{R} \times (\mathbb{R} \setminus \{0\}) \to \mathbb{R}$.
 - (b) Let $f, g: X \to \mathbb{R}$ be continuous functions. Conclude that the functions (f+g), (f-g) and $(f \cdot g)$ are continuous. If $g(x) \neq 0$ for all $x \in X$, conclude that the function f/g is continuous.
- 2. Let (X, d) be a metric space, and let $Y \subseteq X$ be a subset. Show that the restriction $d|_{Y \times Y}$ of d to $Y \times Y \subseteq X \times X$ defines a metric on Y. Conclude that any subset of a metric space inherits a metric space structure.
- 3. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of functions from a topological space X to a metric space Y. See Assignment Problem # 3 for the definitions of pointwise and uniform convergence.
 - (a) Show that uniform convergence implies pointwise convergence.
 - (b) Use the following picture of functions f_1 , f_2 , f_3 , and f_∞ to explain the concept of uniform convergence of functions $\mathbb{R} \to \mathbb{R}$, and how it differs from pointwise convergence.

- 4. (a) Let X be a set. Recall that the *discrete metric* on X is the metric $d(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$ for all $x, y \in X$. Show that this metric induces the discrete topology on X.
 - (b) Consider $\mathbb{N} \subseteq \mathbb{R}$. Show that the usual Euclidean metric on \mathbb{N} induces the discrete topology.
 - (c) Consider $A = \{\frac{1}{n} \mid n \in \mathbb{N}\} \subseteq \mathbb{R}$. Show that the Euclidean metric on A induces the discrete topology.
 - (d) For a metric space (X, d), consider the set $S_d = \{d(x, y) \mid x, y \in X\}$. Conclude that it is possible to have two equivalent metrics d and \tilde{d} where S_d is bounded above and $S_{\tilde{d}}$ is not; and similarly it is possible to have two equivalent metrics d and \tilde{d} where S_d is bounded below and $S_{\tilde{d}}$ is not.
- 5. In class we proved that the box topology on \mathbb{R}^{ω} is not metrizable. Explain where our proof would fail for the product topology on \mathbb{R}^{ω} (which is, in fact, metrizable).
- 6. Let X be a topological space, A a set, and $p: X \to A$ a surjective map. Recall that we defined the *quotient topology* on A to be the $\mathcal{T} = \{U \subseteq A \mid p^{-1}(A) \text{ is open in } X\}$. Verify that \mathcal{T} is in fact a topology.
- 7. Verify that the composite of quotient maps is a quotient map.
- 8. Show that any quotient space of a discrete topological space has the discrete topology, and that any quotient space of an indiscrete topological space has the indiscrete topology.

- 9. (a) Let $f: X \to Y$ be a continuous surjective map of topological spaces. Show that if f is either open or closed, then f is a quotient map. We will see in Assignment Problem #4 part (b) that the converse statements do not hold.
 - (b) Give an example of a map $X \to Y$ of topological spaces that is open but not closed, and an example of map that is closed but not open.
- 10. Consider the following functions from \mathbb{R} to the set $X = \{a, b, c\}$. For each function, find the quotient topology on X induced by the function.

$$\begin{aligned} f_1 : \mathbb{R} \to \{a, b, c\} & f_2 : \mathbb{R} \to \{a, b, c\} & f_3 : \mathbb{R} \to \{a, b, c\} \\ f_1(x) = \begin{cases} a, x \in (-\infty, 0) \\ b, x = 0, \\ c, x \in (0, \infty) \end{cases} & f_2(x) = \begin{cases} a, x = 0 \\ b, x = 1 \\ c, x \neq 0, 1 \end{cases} & f_3(x) = \begin{cases} a, x \in (-\infty, 0) \\ b, x = [0, 1) \\ c, x \in [1, \infty) \end{cases} \end{aligned}$$

Assignment questions

(Hand these questions in! Unless otherwise indicated, give a complete, rigorous justification for each solution.)

- 1. Let $(\mathbf{x}_n)_{n \in \mathbb{N}}$ be a sequence of points in the product space $\prod_{i \in I} X_i$.
 - (a) Show that $(\mathbf{x}_n)_{n \in \mathbb{N}}$ converges to a point $\mathbf{x}_{\infty} \in \prod_{i \in I} X_i$ in the product topology if and only if, for every $i \in I$, the sequence $(\pi_i(\mathbf{x}_n))_{n \in \mathbb{N}}$ in X_i converges to the point $\pi_i(\mathbf{x}_{\infty})$ in X_i .
 - (b) Prove or disprove the same statement for the box topology on $\prod_{i \in I} X_i$.
- 2. Let (X, d) be a metric space, and let $Y \subseteq X$ be a subset. In Warm-Up Problem #2 (which you should check but do not need to write up), we saw that the restriction $d|_{Y \times Y}$ of d to points in Y defines a metric on Y. There are now two ways we can define a topology on Y: as the topology induced by the restriction of the metric d to Y, or as a subspace of X with the topology induced by d. Verify that these two topologies are equal.
- 3. **Definition (Pointwise and Uniform Convergence).** Let X be a topological space, and (Y, d) a metric space. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of functions $f_n : X \to Y$.
 - Then the sequence (f_n)_{n∈N} converges at a point x ∈ X if the sequence (f_n(x))_{n∈N} of points in Y converges.
 - The sequence $(f_n)_{n \in \mathbb{N}}$ converges pointwise to a function $f_{\infty} : X \to Y$ if for every point $x \in X$ the sequence $(f_n(x))_{n \in \mathbb{N}}$ of points in Y converges to the point $f_{\infty}(x) \in Y$.
 - The sequence $(f_n)_{n \in \mathbb{N}}$ converges uniformly to a function $f_{\infty} : X \to Y$ if for every $\epsilon > 0$ there is some $N \in \mathbb{N}$ so that $d(f_n(x), f_{\infty}(x)) < \epsilon$ for every $n \ge N$ and $x \in X$.

In other words, if the sequence $(f_n)_{n \in \mathbb{N}}$ converges pointwise to f_{∞} , then for each $\epsilon > 0$ the choice of N may depend on the point $x \in X$. To converge uniformly to f_{∞} , there must exist a choice of N that is independent of the point x.

- (a) Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of **continuous** functions from a topological space X to a metric space Y. Suppose that this sequence converges uniformly to a function $f_{\infty} : X \to Y$. Show that f_{∞} is continuous.
- (b) Consider the sequence of functions (f_n)_{n∈ℕ} from [0, 1] to [0, 1] (with the usual metric) defined by f_n(x) = xⁿ. Show that this sequence converges pointwise, but conclude from part (a) that it does not converge uniformly.

(c) **Definition (The uniform metric on** \mathbb{R}^{I}). Given an index set I, define the uniform metric on \mathbb{R}^{I} as follows. For points $\mathbf{a} = (a_{i})_{i \in I}$ and $\mathbf{b} = (b_{i})_{i \in I}$, let

$$d(\mathbf{a}, \mathbf{b}) = \sup_{i \in I} \Big\{ \min\{|a_i - b_i|, 1\} \Big\}.$$

(You do not need to verify that this is a metric). The topology induced by d is called the *uniform topology*.

Prove that the uniform topology is finer than (or equal to) the product topology, and coarser than (or equal to) the box topology on \mathbb{R}^{I} .

- (d) Consider a sequence $f_n : X \to \mathbb{R}$ of functions from a topological space X to \mathbb{R} . We can view these functions as elements of the product space \mathbb{R}^X . Prove that the sequence $(f_n)_{n \in \mathbb{N}}$ converges uniformly if and only if it converges as a sequence of elements in \mathbb{R}^X with the uniform topology.
- 4. (a) Let X be a topological space. Let $p: X \to Y$ be a surjective map to a set Y, and endow Y with the quotient topology induced by p. Show that $C \subseteq Y$ is closed in Y if and only if $p^{-1}(C)$ is closed in X.
 - (b) Let $\pi_1 : \mathbb{R} \times \mathbb{R}$ be projection onto the first factor. Consider the result $\pi_1|_A$ of π_1 onto the subspace $A = \{(x, y) \mid x \ge 0 \text{ and/or } y = 0\}$. Show that $\pi_1|_A$ is a quotient map, but that it is neither open nor closed.
 - (c) Let $p: X \to Y$ be a quotient map of topological spaces. Show by example that the restriction of p to a subspace $A \subseteq X$ need not give a quotient map from A to p(A).
 - (d) Prove the following result.

Theorem (Restrictions of quotient maps). Let $p : X \to Y$ be a quotient map of topological spaces. If $A \subseteq X$ is an open subset that is saturated with respect to p, then the restriction of p to A defines a quotient map from A to p(A).

Remark: A similar argument shows that, if A is closed, then $p|_A$ is a quotient map.

5. Consider the topology on \mathbb{R} generated by the basis

$$\{(a,b) \mid a,b \in \mathbb{R}\} \cup \{(a,b) \setminus K \mid a,b \in \mathbb{R}\}, \qquad K = \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\}.$$

This is called the *K*-topology on \mathbb{R} . Let *Y* be the quotient space obtained from \mathbb{R} by identifying all elements of *K* to a single point, and let $p : \mathbb{R} \to Y$ be the quotient map.

- (a) Show that Y is a T_1 -space, but isn't Hausdorff. Conclude in particular from Homework 5 Problem #3 that the diagonal is not closed in $Y \times Y$.
- (b) Show that the product map $\mathbb{R} \times \mathbb{R} \to Y \times Y$ is not a quotient map.

This exercise shows that the product of quotient maps need not be a quotient map.

6. Bonus (Optional).

Definition (Topological group). A *topological group* is a topological space that is also a group, such that the multiplication and inversion maps are continuous:

$$\begin{array}{ll} G\times G\to G & \qquad \qquad G\to G \\ (g,h)\mapsto gh & \qquad \qquad g\mapsto g^{-1} \end{array}$$

- (a) Prove that any open subgroup H of G is also closed.
- (b) Suppose $H \subseteq G$ is a subgroup. Show that its topological closure \overline{H} is also a subgroup.
- (c) Suppose that $H \subseteq G$ is a normal subgroup. Show that the quotient topology on the quotient group G/H makes it a topological group.
- (d) Show that G/H is Hausdorff if and only if H is closed.