Recommended reading: Munkres Section 23.

Roughly similar content: Hatcher Chapter 2 https://pi.math.cornell.edu/~hatcher/Top/TopNotes.pdf

Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Show that a space X is connected if and only if the only subsets of X that are both open and closed are X and \emptyset .
- 2. Consider $\{0,1\}$ as a topological space with the discrete topology. Show that a topological space (X, \mathcal{T}) is disconnected if and only if there is a continuous **surjective** function $X \to \{0,1\}$.
- 3. Show that connectedness is a topological property. In other words, show that, if X is connected, then so is any space that is homeomorphic to X.
- 4. Show that the following topological spaces (with the Euclidean metric) are disconnected.

(a) \mathbb{N} (b) $\{\frac{1}{n} \mid n \in \mathbb{N}\}$ (c) $(0,1) \cup \{5\}$ (d) $(0,1) \cup (1,3)$ (e) $\mathbb{R} \setminus \mathbb{Q}$

- 5. Show that singleton sets $\{x\}$ in a topological space are always connected.
- 6. Suppose that X is connected topological space. Explain why X is also connected with respect to any coarser topology. What about finer topologies?
- 7. Let $A \subseteq X$ be a subspace. Show that A is not connected if and only if the following condition holds: there exist open subsets U, V in X such that $U \cap A$ and $V \cap A$ are nonempty, and $A \subseteq U \cup V$.
- 8. (a) Show by example that disconnected spaces can have connected subspaces.
 - (b) Show by example that connected spaces can have disconnected subspaces.
- 9. Let $X = \{a, b, c, d\}$ with the topology

$$\Big\{\varnothing, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\}\Big\}.$$

Find a nonempty subset of X that is connected, and a nonempty subset of X that is disconnected.

Assignment questions

(Hand these questions in! Unless otherwise indicated, give a complete, rigorous justification for each solution.)

- 1. Let A be a connected subset of X, and suppose that $A \subseteq B \subseteq \overline{A}$. Show that B is connected. *Remark:* In particular, this shows that if A is connected, then \overline{A} is connected.
- 2. Prove the following theorem.

Theorem (Continuous images of connected sets). Suppose that $f : X \to Y$ is a continuous map of topological spaces. If X is connected, then f(X) is connected.

- 3. Definition (Connected components of a topological space). Let (X, \mathcal{T}_X) be a topological space. A subset $C \subseteq X$ is called a *connected component* of X if
 - (i) C is connected;
 - (ii) if C is contained in a connected subset A, then C = A.

(a) Let $x \in X$. Show that the set

 $\bigcup_{\substack{A \text{ is a connected set,} \\ x \in A}} A$

is a connected component of X.

(b) Show that X is the disjoint union of its connected components. In other words, show that the decomposition of X into connected components is a partition of X.

Remark: We can therefore redefine *connected components* as the equivalence classes defined by the following equivalence relation on points of X:

 $x \sim y \qquad \iff \qquad$ there exists a connected subset of X containing x and y.

- (c) Show that any connected component of X is closed. (*Hint*: Problem # 1).
- (d) Determine the connected components of \mathbb{Q} (with the standard topology). Deduce that connected components need not be open.