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1. Each of the following statements is either true or false. If the statement holds in general, write “True”.
Otherwise, write “False”. No justification necessary.

(a) Given a set X, there exists a set of strictly larger cardinality.

True. (Hint: Consider the power set of X.)

(b) The set of all finite subsets of Q is countable.

True. (Hint: Write it as a countable union of countable sets.)

(c) The set of all finite topological spaces (up to homeomorphism) is countable.

True. (Hint: The possible topologies on X are a subset of the power set of X.)

(d) The set {U ⊆ R | U is infinite} ∪ {∅} is a topology on R.

False. (Hint: Consider finite intersections.)

(e) Consider [0, 2] as a subspace of R with the standard topology. The subset (1, 2] ⊆ [0, 2] is open.

True. (Hint: What is (1, 3) ∩ [0, 2]?)

(f) Consider [0, 2] as a subspace of R with the standard topology. Then (0, 1) ∪ {2} ⊆ [0, 2] is open.

False. (Hint: What must be true of an open subset of R containing 2?)

(g) Let f : X → R be a map from a space X to R (with the standard topology). Then X is continuous
if and only if f−1(Br(x)) is open for every rational numbers x, r ∈ Q, r > 0.

True. (Hint: Check that {Br(x) | r, x ∈ Q} is a basis for the standard topology.)

(h) Let X be a space with the property that points {x} are open. Then X is a T1-space.

True. (Hint: Check that X in fact must have the discrete topology.)

(i) The Cartesian product of two quotient maps is a quotient map.

False. (Hint: Homework 8, Problem #5.)
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(j) The composite of two quotient maps is a quotient map.

True. (Hint: Check that the three conditions are preserved by composition.)

(k) The set {a, b, c, d} with the topology {∅, {c}, {a, b}, {a, b, c}, {a, b, c, d}} is connected.

True. (Hint: Check that no proper nonempty subset is both open and closed.)

2. Each of the following statements is either true or false. If the statement holds in general, write “True”.
Otherwise, state a counterexample. No justification necessary.

Note: You can get partial credit for correctly writing “False” without a counterexample.

Remark: These solutions have more justification than needed. On the exam it is enough to simply state
the counterexample.

(i) Let f : X → Y be a function of sets X and Y . If there is a function g so that g ◦ f : X → X is the
identity map of X, then f is invertible.

False. For example, consider the case where X = R, Y = R × R, f is the inclusion of the
x-axis, and g is the projection onto the x-axis, as follows.

f : R −→ R× R g : R× R −→ R
x 7−→ (x, 0) (x, y) 7−→ x

Then g ◦ f is the identity on R, but f (and g) are not invertible.

(ii) Let X be a topological space, and S ⊆ X be a subset with no limit points. Then S is closed.

True.

(iii) Let X be a topological space, and C ⊆ X a closed set. The inclusion map C → X is a closed map.

True.

(iv) Let A be a subset of a metric space (X, d). Then any element of ∂A must be both a limit point of
A, and a limit point of X \A.

False. For example, consider X = R with the standard topology, and A = {1}. Then ∂A = {1}
but 1 is not a limit point of A.

(v) Let X be a topological space, and S ⊆ X. Then ∂S = ∂
(
S
)
.

False. Consider S = Q ⊆ R with the Euclidean metric. Then ∂S = R but ∂(S) = ∂R = ∅.
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(vi) Let X be a topological space, and S ⊆ X. Then S = X \ Int(X \ S).

True.

(vii) If A ⊆ B, then Int(A) ⊆ Int(B).

True.

(viii) If A ⊆ B, then all limits points of A are also limit points of B.

True.

(ix) If Int(A) = Int(B) and A = B, then A = B.

False. Consider A = [0, 1) ⊆ R and B = (0, 1] ⊆ R. Then

Int(A) = Int(B) = (0, 1) and A = B = [0, 1]

but A 6= B.

(x) If Int(A) = A, then A is both open and closed.

True.

(xi) Let (X, T ) be a topological space, and let x, y be distinct points in X. Let (an)n∈N be the sequence
x y x y x y x y · · · . Then (an)n∈N does not converge.

False. For example, consider X = {x, y} with the indiscrete topology. Then the sequence
converges to both x and to y.

(xii) If a sequence of points (an)n∈N in a topological space X converges to a point a∞, then a∞ is a limit
point of the set {an | n ∈ N}.

False. For example, consider the constant sequence (0)n∈N in R. Then the sequence converges to
0, but 0 is not a limit point of the set {0} ⊆ R.

(xiii) Suppose (an)n∈N is a sequence in a topological space, and that x is a limit point of the set
{an | n ∈ N}. Then there is some subsequence converging to x.

False. Let X = N with the topology {∅} ∪ {U | 1 ∈ U}, and consider the sequence an = n. Then
2 is a limit point of the sequence, since every neighbourhood of 2 contains a1 = 1. However, there
is no subsequence converging to 2, since (for example) the neighbourhood {1, 2} of 2 contains only
finitely many terms in the sequence.
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(xiv) There is no sequence in R (with the standard topology) with the property that, for any r ∈ R,
there is some subsequence converging to R.

False. For example, consider any sequence (an)n∈N that enumerates the (countable set) Q.
Then (an)n∈N has a subsequence of rational numbers that converge to any real number.

(xv) Let X and Y be metric spaces, and f : X → Y a continuous function. If B ⊆ X is bounded, then
f(B) is bounded.

False. For example, consider X = Y = (0,∞) in the Euclidean metric, and the continuous map

f : (0,∞)→ (0,∞) given by f(x) = 1
x . Then (0, 1) ⊆ (0,∞) is bounded, but f

(
(0, 1)

)
= (1,∞) is

not bounded.

(xvi) Let f : X → Y be continuous function. If X is Hausdorff, then f(X) is Hausdorff.

False. For example, consider the identity map

I : (R,discrete topology) −→ (R, indiscrete topology)

x −→ x

Then I is continuous and (R,discrete topology) is Hausdorff, but im(f) = (R, indiscrete topology)
is not Hausdorff.

(xvii) Let f : X → Y be a continuous map. Then the restriction of f to any subspace of X is continuous
(with respect to the subspace topology).

True.

(xviii) Let (fn : X → R)n∈N be a sequence of continuous functions that converge pointwise to a function
f : X → R. If f is continuous, then the functions must converge uniformly.

False. For example, consider the functions

fn : (0, 1)→ R
fn(x) = xn.

Then the sequence converges to the constant function f(x) = 0, but convergence is not uniform.

(xix) An injective quotient map is necessarily a homeomorphism.

True.

(xx) Let p : X → A be a quotient map. If X is a T1-space, then A is a T1-space.
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False. Consider the map

f : R −→ {a, b}

f(x) =

{
a, x ∈ (−∞, 0)
b, x ∈ [0,∞)

Then R is a T1-space, but the quotient topology
{
∅, {a}, {a, b}

}
on the codomain does not have

the T1 property, since {a} is not closed.

(xxi) If (X, T ) is a connected topological space, and T ′ is a coarser topology on X , then (X, T ′) is also
connected.

True.

(xxii) Let A and B be nonempty subsets of a topological space (X, T ). If A and B are connected and
A ∩B is nonempty, then A ∩B is connected.

False. For example, consider the following two
subsets of R2 (with the Euclidean metric). A

B

3. Let X be a set, and suppose that T1 and T2 are two topologies on X.

(a) Show that the intersection T1 ∩ T2 is a topology on X.

Solution. Suppose T1 and T2 are topologies on X. To check that T1 ∩ T2 is a topology, we
must check the three conditions.

First, we observe that ∅, X must be contained in both T1 and T2 (since T1 and T2 are topologies),
hence ∅, X ∈ T1 ∩ T2.

Next, we supppose that U1, U2 ∈ T1 ∩ T2. Then U1, U2 ∈ T1, so U1 ∩ U2 ∈ T1 by definition of a
topology. The same argument shows U1 ∩ U2 ∈ T2. We conclude that U1 ∩ U2 ∈ T1 ∩ T2.

Finally, suppose {Ui}i∈I is a collection of open subsets in T1 ∩T2. Then {Ui}i∈I ⊆ T1, so
⋃
i∈I Ui ∈

T1. Similarly,
⋃
i∈I Ui ∈ T2. Hence

⋃
i∈I Ui ∈ T1 ∩ T2.

We conclude that T1 ∩ T2 is a topology on X.

(b) Show by example that the union T1 ∪ T2 need not be a topology on X.

Solution. Consider the two topologies on the set {a, b, c},

T1 = {∅, {a}, {a, b, c}} and T2 = {∅, {b}, {a, b, c}}.

Their union
T1 ∪ T2 = {∅, {a}, {b}, {a, b, c}}

is not a topology, because it does not contain the union {a} ∪ {b} = {a, b}.
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4. Let (X, T ) be a topological space, and let S ⊆ X be a subset. Show that ∂(∂S) = ∂S if and only if ∂S
has empty interior.

Solution. First suppose that x ∈ Int(∂S). Then x ∈ ∂S. But, the boundary and interior of any
set are disjoint, so x /∈ ∂(∂S). In this case we conclude that ∂(∂S) 6= ∂S.

Next suppose that ∂S has empty interior. Recall that we showed, for a general set A, that ∂A =
A \ Int(A). Then

∂(∂S) = ∂S \ Int(∂S)

= ∂S \∅ (by assumption)

= ∂S

= ∂S (since boundaries are closed)

as claimed.

5. Let (X, T ) be a topological space, and let S ⊆ X be a subset. Suppose that the subspace topology on
S is the discrete topology. Prove or give a counterexample: S is closed as a subset of X.

Solution. The statement is false. Consider, for example, the X = R with the standard topology,
and the subset

S =

{
1

n

∣∣∣∣ n ∈ N
}
.

Then S has the discrete topology. To check this, it suffices to show that each point { 1n} ⊆ S is open
in the subspace topology. Since any nonempty subset of S is a union of its points, it will follow that
arbitrary subsets of S are open. But{

1

n

}
= S ∩

(
1

n+ 1
,

1

n− 1

)
is the intersection of S and an open subset, and is therefore open. Hence S has the discrete topology.

The set S, however, is not closed, since 0 is a limit point of S that is not contained in S.

6. Consider the following functions f : R→ R.

• f(x) = x

• f(x) = 0

• f(x) = x2

• f(x) = cos(x)

• f(x) = x+ 1

• f(x) = −x

Determine whether these functions are continuous . . .

(a) . . . when R has the topology T = {(a,∞) | a ∈ R} ∪ {∅} ∪ {R}.
(b) . . . when R has the cofinite topology.

(c) . . . when R has the cocountable topology.

(d) . . . when R has the topology T = {R} ∪ {U ⊆ R | 0 /∈ U}.
(e) . . . when R has the topology T = {∅} ∪ {U ⊆ R | 0 ∈ U}.

Solution. The identity function f(x) = x and the constant function f(x) = 0 are continuous with
respect to any topology on R. We will give full solutions in the case f(x) = x+ 1.
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• R has the topology T = {(a,∞) | a ∈ R} ∪ {∅} ∪ {R}.
In this case, f is continuous. The preimages of the open sets are always open:

f−1(∅) = ∅, f−1(R) = R, f−1((a,∞)) = (a− 1,∞).

• R has the cofinite topology.
In this case, f is continuous. It suffices to check that the preimages of closed subsets are closed.
But the proper closed subsets of R are exactly the finite subsets, and (because f is one-to-one) the
preimage of any finite subset is finite.

• R has the cocountable topology.
In this case, f is continuous. Again it suffices to check that the preimages of closed subsets are
closed. But the proper closed subsets of R are exactly the countable subsets, and (because f is
one-to-one) the preimage of any countable subset is countable.

• R has the topology T = {R} ∪ {U ⊆ R | 0 /∈ U}.
In this case, f is not continuous. The preimage of the open set {1} is the not-open set {0}.
• R has the topology T = {∅} ∪ {U ⊆ R | 0 ∈ U}.

In this case, f is not continuous. The preimage of the open set {0} is the not-open set {−1}.

7. Consider the set X = {a, b, c, d} with the topology

T = {∅, {a}, {a, b}, {a, c}, {a, b, c}, {a, b, d}, {a, b, c, d}}.

(a) Write down a permutation of the elements of X that is not continuous.

Solution. Consider the permutation σ given by

a 7→ b 7→ a, c 7→ c, d 7→ d.

Then {a} is open, but σ−1({a}) = {b} is not open, so σ is not continuous.

(b) Is there a nonconstant, nonidenty map X → X that is continuous?

Solution. Consider the map f : X → X given by

a, b 7→ a, c 7→ c, d 7→ d.

Then

f−1(∅) = ∅ f−1({a}) = {a, b}
f−1({a, b}) = {a, b} f−1({a, c}) = {a, b, c}
f−1({a, b, c}) = {a, b, c} f−1({a, b, d}) = {a, b, d}
f−1({a, b, c, d}) = {a, b, c, d}

and so we see that f is continuous.

(c) Is there a non-identity permutation of the elements of X that is a homeomorphism?
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Solution. There is no non-identity permutation of X that is a homeomorphism. Recall that, if f
is homeomorphism, then f must be a bijection, and the induced maps

T −→ T
A 7−→ f(A)

B 7−→ f−1(B)

must be bijections. Note that this means if A is an n-element set, then f(A) and f−1(A) must
also be n-element sets. Note further that (for example), since the element d is contained in one
3-element and one 4-element open set (and no other open set), f must map d to an element that is
contained in one 3-element and one 4-element open set (and no other open set). But d is the only
such element, so f(d) = d. Observe more generally that:

• a is the only element for which {a} is open

• b is the only element contained in exactly 4 open sets

• c is the only element contained in exactly 3 open sets

• d is the only element conttained in exactly 2 open sets.

Any homeomorphism must therefore map every one of these elements to themselves.

(d) Let [0, 1] be the closed interval with the standard topology. Is there a non-constant continuous
surjective map [0, 1]→ X?

Solution. Consider the map

f : [0, 1]→ X

f(x) =

{
a, x ∈ [0, 12 )
b, x ∈ [ 12 , 1].

Then we can verify that the preimage of each open set is open:

f−1(∅) = ∅

f−1({a}) = f−1({a, c}) =

[
0,

1

2

)
f−1({a, b}) =−1 ({a, b, c}) = f−1({a, b, d}) = f−1({a, b, c, d}) = [0, 1]

and so conclude that f is continuous.

(e) Is there a non-constant continuous map X → [0, 1]?

Solution. There is no such continuous map. Suppose (for the sake of contradiction) that f
were such a map. Then the image of f is a finite set containing at least two elements (since f is
non-constant). The image must therefore be discrete. If x, y ∈ f(X) with x 6= y, then f−1({x} and
f−1({y} must both be disjoint open subsets of X. However, at most one of these sets can contain
a, and every open subset of X contains a, a contradiction.

8. Prove the following propositions.
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(a) A function f : X → Y of topological space is continuous at the point x ∈ X if for every neighbour-
hood U of f(x), there is a neighbourhood V of x such that f(V ) ⊆ U .

Proposition. A function f : X → Y of topological spaces is continuous if and only if it is
continuous at every point x ∈ X.

(b) Proposition. Let f : X → Y be a function of topological spaces. Then f is continuous if
and only if f−1 (Int(B)) ⊆ Int(f−1(B)) for every B ⊆ Y .

Solution. First, suppose that f is a function satisfying the condition stated in the Proposition.
We will show that f is continuous. Let U ⊂ Y be an open subset; we must show that f−1(U) is
open. But

Int(f−1(U)) ⊆ f−1(U) (by definition of interior),

= f−1 (Int(U)) (since U is open),

⊆ Int(f−1(U)) (by assumption).

This sequence of set-containments is only possible if we have equality at each step, and in particular
we conclude that Int(f−1(U)) = f−1(U), and it follows that f−1(U) is open.

Now suppose that f is continuous, and we will verify that f satisfies the condition in the proposi-
tion. For any set B ⊆ Y , the interior Int(B) is open, so (by definition of continuity) f−1(Int(B))
is open. Moreover, since Int(B) ⊆ B, it follows that f−1(Int(B)) ⊆ f−1(B). But, we proved that
every open subset of a set A must be contained in Int(A). In this case, because f−1(Int(B)) is an
open subset f−1(B), it must be contained in Int(f−1(B)). This completes the proof.

(c) Proposition. Let f : X → Y be a function of topological spaces, and let S be a subbasis
for Y . Then f is continuous if and only if f−1(U) is open for every subbasis element U ⊆ S.

9. Let {0, 1} be a topological space with the discrete topology. Let X be a topological space and A ⊆ X a
subset. Define the characteristic function on A

χA : X −→ {0, 1}

χA(x) =

{
1, x ∈ A
0, x /∈ A

(a) Prove that χA is continuous at a point x ∈ X if and only if x /∈ ∂A.

(b) Prove that χA is continuous if and only if A is both open and closed.

10. You proved on Homework #6 that if X = A ∪ B for closed sets A and B, and f : X → Y is a function
whose restriction to A and B are both continuous, then f is continuous. Prove or disprove that the same
statement holds ifX is a union of (possibly infinitely many) closed sets Ai, with f |Ai continuous for each i.

Solution. The statement is false. Consider any discontinuous function f : R→ R, for example,

f(x) =

{
1, x ∈ [0, 1],
0, x /∈ [0, 1].

Since points {x} ⊆ R are closed, we can write R as the union of closed sets R =
⋃
x∈R{x}. But we can

verify that the restriction of f to {x} is continuous: the preimage of any subset of R must be equal to
one of the two subsets ∅ and {x} of {x}, and both subsets are open. Hence f is a discontinuous function
with the property that its restriction to every closed subset is continuous.
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11. Let (X, d) be a metric space, and let B be a basis for the topology Td induced by d.

(a) Let S ⊆ X be a subset, and s ∈ S. Show that s is an interior point of S if and only if there is some
element B ∈ B such that s ∈ B and B ⊆ S.

(b) Deduce that Int(S) =
⋃

B∈B,B⊆S

B.

12. Let f : X → Y be a function of topological spaces. Prove that f is open if and only if f(Int(A)) ⊆
Int(f(A)) for all sets A ⊆ X.

13. (a) Let (X, TX) be a Hausdorff topological space, and let x1, . . . , xn be a finite collection of points in
X. Show that there are open sets U1, . . . , Un such that xi ∈ Ui, and which are pairwise disjoint
(this means Ui ∩ Uj = ∅ for all i 6= j).

Solution. Let x1, . . . , xn be a finite collection of points in X. Since X is Hausdorff, for ev-
ery distinct pair of points xi and xj , there exist disjoint neighbourhoods Ui,j of xi and Uj,i of xj .
For each i = 1, . . . , n, define the set

Ui =
⋂

j∈{1,2,...,n}
j 6=i

Ui,j .

Since i ∈ Ui,j for all j, their intersection Ui is a neighbourhood of i. We claim that these neighbour-
hoods are pairwise dijoint. Suppose that x ∈ Ui ∩ Uj . But then x ∈ Ui ⊆ Ui,j and x ∈ Uj ⊆ Uj,i,
which is a contradiction since Ui,j and Uj,i were disjoint by construction. Thus we have constructed
pairwise disjoint sets U1, . . . , Un with xi ∈ Ui for each i.

(b) Let X be a finite topological space. Prove if X is Hausdorff, then it has the discrete topology.

Solution. Since X is finite, we can denote its elements by x1, . . . , xn for n = |X|. By part
(a), there are neighbourhoods Ui if xi for each i that are pairwise disjoint. Fix i. Since Ui is disjoint
from Uj for each j 6= i, we infer that xj /∈ Ui for all j 6= i, so Ui = {xi}. Thus we deduce that points
in X are open. Since every nonempty set can be expressed as a union of its points, we conclude
that every subset of X is open. Hence X has the discrete topology.

14. Let A ⊆ R be a nonempty bounded subset. Prove that its supremum sup(A) is either in the set A, or it
is a limit point of A.

15. Let (an)n∈N be a sequence of points in a topological space X that converges to a∞ ∈ X.

(a) Prove that, if we replace the topology on X with any coarser topology, then the sequence (an)n∈N
will still converge to a∞.

(b) Show by example that, if we replace the topology on X with any finer topology, then the sequence
(an)n∈N may no longer converge to a∞.

16. Let X be a metric space, and let a∞ ∈ X. Let (an)n∈N be a sequence in X with the property that ev-
ery subsequence of (an)n∈N has a subsequence that converges to a∞. Prove that (an)n∈N converges to a∞.

Solution: We will prove the contrapositive: We will show that if (an)n∈N does not converge to a∞, then
we can construct a subsequence (ani)i∈N with the property that none of its (sub)subsequences converges
to a∞.

Recall that a sequence (an)n∈N converges to a∞ if, for every ε > 0, there is some N ∈ N such that
an ∈ Bε(a∞) for all n > N . This means that the sequence (an)n∈N fails to converge to a∞ if for some
ε > 0, for every N ∈ N there is some n > N so that an /∈ Bε(a∞).
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Assume that (an)n∈N does not converge, and choose such a value of ε > 0. It follows that there is some
n1 ∈ N so that an1 /∈ Bε(a∞). But then, taking N1 = n1, there is necessarily some n2 > n1 so that
an2

/∈ Bε(a∞). And, again, taking N2 = n2, there is some n3 > n2 such that an3
/∈ Bε(a∞). Continuing

with this procedure, by induction, we obtain a subsequence (ani)i∈N that has no terms contained in
Bε(a∞).

We will show that no subsequence of (ani)i∈N converges to a∞. Let (anij )j∈N be any (sub)subsequence

of this subsequence. Consider the value ε > 0 as defined above. If (anij )j∈N converged to a∞, then anij
must be contained in Bε(a∞) for infinitely many values of j. However, the terms anij by construction

are not contained in Bε(a∞) for any values of j. Thus, the subsequence does not converge to a∞.

We conclude that a sequence (an)n∈N must converge to a∞ if it has the property that each of its subse-
quences has a (sub)subsequence converging to a∞.

17. Let X be a topological space A ⊆ X, and h : X → R a continuous function. Suppose there is a constant
c such that h(x) ≤ c for all x ∈ A. Prove that h(x) ≤ c for all x ∈ A.

Solution. Since h is a continuous map, we know that f−1(C) is closed for every closed subset
C ⊆ R. In particular, f−1((−∞, c]) is closed. By assumption, A ⊆ f−1((−∞, c]). By definition A is
the intersection of every closed set containing A, hence A is contained in every closed set containing A.
Notably, A ⊆ f−1((−∞, c]). Therefore f(x) ≤ c for all x ∈ A.

18. Suppose that X and Y are nonempty topological spaces, and that the product topology on X × Y is
Hausdorff. Prove that X and Y are both Hausdorff.

Solution. We first claim that, if a space Z is Hausdorff, then so is any subspace S ⊆ Z. Con-
sider two distinct points x, y ∈ S. Since Z is Hausdorff, there are open neighbourhoods Ux and Uy of x
and y, respectively, that are disjoint. Then (by definition of the subspace topology) Ux ∩ S and Uy ∩ S
are open subsets of S. They are necessarily still neighbourhoods of x and y, respectively, and still must
be disjoint. Thus S is Hausdorff.

Fix x0 ∈ X and y0 ∈ Y ; these elements exist by the assumption that X and Y are nonempty. Next we
claim that the maps

iX : X → X × Y iY : Y → X × Y
x 7→ (x, y0) y 7→ (x0, y)

are embeddings. It is clear that they are injective, and so bijections onto their images. We will verify
that iX is a embedding by checking that, if we restrict its codomain to its image, it is both continuous
and open. A similar argument shows that iY is an embedding.

Let U be an open set in X. Then

iX(U) = U × {y0} = (U × Y ) ∩ (X × {y0}) = (U × Y ) ∩ im(iX).

Since U × Y is open in the product topology, we conclude that iX(U) is open in the subspace topology
on im(iX). By Homework 6 Problem #3, because the identity map X × Y → X × Y is continuous, it is
continuous in each variable, which shows in particular that iX is continuous.

Now, since X×{y0} is a subspace of the Hausdorff space X×Y , we deduce that it is Hausdorff. We have
proved moreover that this subspace is homeomorphic to X. Since the Hausdorff property is a homeo-
morphism invariant, we conclude that X is Hausdorff. A similar argument shows that Y is Hausdorff.
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19. (a) Let (X, TX) and (Y, TY ) be topological spaces, and let f : X → Y be a function. Recall that the
graph of f is defined to be the subset of X × Y

{ (x, f(x)) ∈ X × Y | x ∈ X }.

Suppose that Y is Hausdorff. Show that, if f is continuous, then the graph of f is a closed subset
of X × Y with respect to the subspace topology TX×Y .

Solution: Denote the graph by G ⊆ X × Y . To show that G is closed, we wish to show that
its complement is open. To do this, it suffices to show that any point (x, y) in the complement of
G has an open neighbourhood that is contained in the complement of G.

Let (x, y) be a point in the complement of G. Then y 6= f(x). Since Y is Hausdorff, we can
therefore find disjoint open neighbourhoods V of y and W of f(x) in Y . Since f is continuous,
the subset U = f−1(W ) is open in X. Because f(x) ∈W , we know x is contained in its preimage U .

(x, y)

(x, f(x))

U × V

Graph of f

y

x
U = f−1(W )

f(x)

V

W

We claim that the subset U × V is an open neighbourhood of (x, y) in X × Y contained in the
complement of G. The subset U ×V contains (x, y) by construction, and it is open in X×Y by the
definition of the product topology. So it suffces to show that U ×V is contained in the complement
of G.

Consider (u, v) ∈ U × V . Then f(u) ∈ W by definition of U . But v ∈ V and V is disjoint from
W by construction, so v 6= f(u). We conclude that (u, v) /∈ G, and that U × V is contained in the
complement of G as claimed.

(b) Show by example that, if Y is not Hausdorff, the graph of a function f : X → Y need not be closed.

Solution: Consider the set R with the indiscrete topology, and consider the identity function
I : R → R. Then the graph of I is the diagonal ∆ = {(x, x) | x ∈ R} ⊆ R × R. The product
topology on R× R is generated by the basis

∅×∅ = ∅, R×∅ = ∅, ∅× R = ∅, R× R

and hence is the indiscrete topology on R. Since ∆ is a proper nonempty subset of R×R, it is not
closed.
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20. Let f, g : X → Y be continuous maps between topological spaces. Show that if Y is Hausdorff, then the
set S = {x ∈ X | f(x) = g(x)} is closed.

21. (a) Let S ⊆ X be a subset of a topological space X. Explain why, to show that S is closed, it suffices
to show that S is the preimage of a closed set under a continuous function.

Solution. We proved that a function f : X → Y of topological spaces is continuous if and
only if f−1(C) ⊆ X is closed for every closed set C ⊆ Y . Hence, if a subset of A ⊆ X is the
preimage of a closed set C under a continuous function f , then A must be closed.

(b) Show that the following subsets of R2 (with the usual topology) are closed:

{(x, y) | xy = 1} S1 = {(x, y) | x2 + y2 = 1} D2 = {(x, y) | x2 + y2 ≤ 1}

Solution. It is a result from real analysis that a polynomial p(x, y) in variables x and y defines
a continuous function from R× R→ R. Then we can use part (a) to check that each of the above
sets is closed:

• {(x, y) | xy = 1} is the preimage of the closed set {1} ⊆ R under the continuous function
p(x, y) = xy.

• S1 = {(x, y) | x2 + y2 = 1} is the preimage of the closed set {1} ⊆ R under the continuous
function q(x, y) = x2 + y2 .

• D2 = {(x, y) | x2 + y2 ≤ 1} is the preimage of the closed set (−∞, 1] ⊆ R under the continuous
function q(x, y) = x2 + y2.

22. Let X be a topological space.

(a) Suppose that X is Hausdorff. Let x ∈ X. Show that the intersection of all open sets containing x
is equal to {x}.

Solution. Fix x ∈ X. Let
U =

⋂
x∈Ux
Ux open

Ux.

Since x ∈ Ux for all x, it follows that x ∈ U . We need to show that, under the assumption that x
is Hausdorff, y /∈ U for all y 6= x. But if y 6= x, then there are disjoint neighbourhoods Ux of x and
Uy of y. In paritcular, y /∈ Ux. Hence y /∈ U , and we conclude that U = {x} as claimed.

(b) Show that the converse statement does not hold. Specifically, suppose (X, T ) is a infinite set with
the cofinite topology. Show that (X, T ) is not Hausdorff, but for any x ∈ X the intersection of all
open sets containing X is equal to {x}.

Solution. Consider the set X = R with the cofinite topology. Then X is not Hausdorff, as
any two nonempty open sets have an uncountable intersection. But we will show that, for any
x ∈ X, ⋂

x∈Ux
Ux open

Ux = x.

Fix x in X. Again, it is clear that x ∈ U . To show equality, we must show that y /∈ U for all y 6= x.
But given y 6= x, the sett Ux = R \ {y} is an open neighbourhood of x, and so U ⊆ R \ {y}. We
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conclude that y /∈ U , and therefore that U = {x}.

23. Let Rω =
∏

N R (so an element of Rω is precisely a sequence (an)n∈N of real numbers.) Fix sequences
(an)n∈N and (bn)n∈N with an 6= 0 for all n. Define

h : Rω −→ Rω

(x1, x2, x3, . . .) 7−→ (a1x1 + b1, a2x2 + b2, a3x3 + b3, . . .)

Determine whether h is a homeomorphism if its domain and codomain are given the product topology,
and if they are given the box topology.

Hint: h is a homeomorphism in both cases. See Homework #7 Warm-up Problem 3.

24. Find an explicit homeomorphism bewteen the intervals (0, 1) and (1,∞) with the Euclidean metric.

25. Let (X, d) be a metric space. Show that the function D(x, y) =
d(x, y)

1 + d(x, y)
defines a new metric on X.

Solution.

First note that, since d(x, y) ≥ 0 for all x, y, the denominator of D(x, y) is always strictly positive (and
never zero), so D is well-defined. To chekc that it si a metric, we will check the three axioms.

• (Positivity). Since d(x, y) ≥ 0 for all x, y ∈ X, the function D(x, y) is the ratio of a nonnegative
number to a strictly positive number, and is therefore always nonnegative. Moreover, D(x, y) = 0
if and only if its numerator d(x, y) = 0, which happens if and only if x = y since d is a metric.

• (Symmetry). D(y, x) =
d(y, x)

1 + d(y, x)
=

d(x, y)

1 + d(x, y)
= D(x, y) for all x, y ∈ X since d is a metric and

therefore symmetric in x and y.

• (Triangle inequality). First observe that the function F (t) = t
1+t has positive derivative F ′(t) =

1
(1+t)2 , and therefore is increasing in t. Then for any x, y, z ∈ X, we know d(x, z) ≤ d(x, y)+d(y, z),

and therefore F (d(x, z)) ≤ F (d(x, y) + d(y, z)). Expanding this inequality,

D(x, z) =
d(x, z)

1 + d(x, z)

= F (d(x, y)

≤ F (d(x, y) + d(y, z))

=
d(x, y) + d(y, z)

1 + d(x, y) + d(y, z)

=
d(x, y)

1 + d(x, y) + d(y, z)
+

d(y, z)

1 + d(x, y) + d(y, z)

≤ d(x, y)

1 + d(x, y)
+

d(y, z)

1 + d(y, z)

= D(x, y) +D(y, z).
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26. Let fn : X → Y be a sequence of functions from a topological space X to a metric space (Y, d). Let
(xn)n∈N be a sequence of points in X converging to x∞.

(a) Show that, if the sequence
(
fn
)
n∈N converges uniformly to a function f∞, then the sequence(

fn(xn)
)
n∈N converges to f∞(x∞).

Solution. To verify that
(
fn(xn)

)
n∈N converges to f∞(x∞), we must show that, for every

ε > 0, there is some N ∈ N so that fn(xn) ∈ Bε
(
f∞(x∞)

)
for all n ≥ N .

So fix ε > 0. Because the sequence (fn)n∈N converges uniformly, there exists some N1 ∈ N so that
d(fn(x), f∞(x)) < ε

2 for all n ≥ N1 and all x ∈ X. In particular, taking x = xn,

d(fn(xn), f∞(xn)) <
ε

2
for all n ≥ N1.

Next, recall that, because f∞ is the uniform limit of a sequence of continuous functions, by Home-
work #8 Problem 3(a), the function f∞ must also be continuous. Hence, the preimage f−1∞ (B) of

the ball B = B ε
2

(
f∞(x∞)

)
under f∞ is an open subset of X containing x∞. Then, because the

sequence (xn)n∈N converges to x∞, there must be some N2 ∈ N so that xn ∈ f−1∞ (B) for all n ≥ N2.

In other words, f(xn) ∈ B = B ε
2

(
f∞(x∞)

)
for all n ≥ N2. This means that

d(f∞(xn), f∞(x∞)) <
ε

2
for all n ≥ N2.

So let N = max{N1, N2}. Then for all n ≥ N , we find that

d(fn(xn), f∞(x∞)) ≤ d(fn(xn), f∞(xn)) + d(f∞(xn), f∞(x∞))

<
ε

2
+
ε

2
= ε.

Hence for all n ≥ N , fn(xn) ∈ Bε
(
f∞(x∞)

)
. We conclude that

(
fn(xn)

)
n∈N converges to f∞(x∞),

as claimed.

(b) Show that this conclusion need not hold if the sequence of functions
(
fn
)
n∈N only converges point-

wise to f∞.

Solution. Recall from Homework 8 Problem #3(b) that the sequence of functions

fn : [0, 1]→ R
x 7→ xn

converges pointwise to the function

f(x) =

{
0, x ∈ [0, 1)
1, x = 1.

Consider the sequence (1− 1
n )n∈N in R. Then

fn

(
1− 1

n

)
=

(
1− 1

n

)n
n→∞−−−−→ 1

e
,

whereas

f

(
lim
n→∞

(
1− 1

n

))
= f(1) = 1.
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27. Consider the sequence of functions fn : [0.1]→ [0, 1] defined by the equations fn(x) =

{
nx, 0 ≤ x ≤ 1

n
1, 1

n ≤ x ≤ 1.

(a) Show that this sequence (fn)n∈N converges pointwise to the constant function f(x) = 1.

(b) Show that this sequence does not converge uniformly.

(c) Conclude that, even when a sequence of continuous functions converges pointwise to a continuous
function, the convergence need not be uniform.

28. Let (X, d) be a metric space. Fix x0 ∈ X and r > 0 in R.

(a) Show that the closure of the open ball Br(x0) is contained in {x | d(x0, x) ≤ r}.

Solution. By part (d), the set {x | d(x0, x) ≤ r} is closed, and (by inspection) it contains
Br(x0). By the definition of closure, it therefore must contain the closure of Br(x0).

(b) Give an example of a metric space where the closure is always equal to this set.

Solution. A result from real analysis is that, over R (with the standard topology),

Br(x0) = {x | d(x0, x) ≤ r}.

(c) Give an example of a metric space X and a ball Br(x0) whose closure is a strict subset of
{x | d(x0, x) ≤ r}.

Solution. Recall that the discrete metric on R is given by

d(x, y) =

{
0, x = y
1, x 6= y

Consider the ball B1(0) = {0}. This set is both open and closed, so it is equal to its own closure.
In contrast, {x | d(0, x) ≤ 1} = R.

(d) Show that the set {x | d(x0, x) ≤ r} is closed in any metric space.

Solution. Let B denote the set {x | d(x0, x) ≤ r}. To show that B is closed, we will show
that its complement is open, which we will do by proving that an arbitrary point y in the comple-
ment is an interior point of the complement. So suppose that y /∈ B, this means that d(x0, y) > r.
Let ε = d(x0, y) − r; it follows that ε > 0. We will show that the ball Bε(y) is contained in the
complement of B, which will prove that y is an interior point and thus conclude the proof. Let
z ∈ Bε(y); our goal is to show that z /∈ B. But

d(x0, y) ≤ d(x0, z) + d(z, y) (by the triangle inequality)

d(x0, y) < d(x0, z) + ε (since z ∈ Bε(y))

d(x0, y) < d(x0, z) +
(
d(y, x0)− r

)
r < d(x0, z)
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Thus, z /∈ B. This shows that Bε(y) is a neighbourhood of y contained in the complement of B.
Then y is an interior point of the complement; the complement is open, and B is closed.

29. Let (X, d) be a metric space, and let S ⊆ X be a finite subset of X. Prove that S . . .

(a) is closed. (b) is bounded. (c) has no limit points.

(d) Show that S may or may not have empty interior Int(S) = ∅.

30. Given an index set I, define metrics on RI as follows. For points x = (xi)i∈I and y = (yi)i∈I , recall that
we defined the uniform metric by

dU (x,y) = sup
i∈I

{
min{|xi − yi|, 1}

}
.

Moreover, when I = N, define a new metric let

d(x,y) = sup
i∈N

{
min{|xi − yi|, 1}

i

}
.

(a) Verify that the uniform metric dU is in fact a metric. We proved that this metric induces the
uniform topology on RI .

(b) Suppose I = N. Verify that d is a metric.

(c) Show that d induces the product topology on Rω.

Solution: The following proof is from Munkres Theorem 20.5.

Recall that the product topology on Rω is, by definition, generated by the basis{∏
i∈N

Ui

∣∣∣∣∣ Ui ⊆ R is open; there is some N ∈ N such that Ui = R for all i ≥ N

}
.

We first show that the product topology is finer than the metric topology. Choose an open set U
in the metric topology. To check that U is open in the product topology, we will check that an
arbitrary point x = (xi)i∈N is an interior point of U in the product topology. Choose ε > 0 so that
Bdε (x) ⊆ U . Then choose N large enough that 1

N < ε. Let

V = (x1 − ε, x1 + ε)× (x2 − ε, x2 + ε)× · · · × (xN − ε, xN + ε)× R× R× R× · · ·

By construction, x ⊆ V , and V is open in the product topology. If we can show that V ⊆ Bdε (x) ⊆ U ,
then we can conclude that x is an interior point of U , and U is open in the product topology. So
let y = (yi)i∈N ∈ V . Then

d(x, y)

= sup

{
min{|x1 − y1|, 1}

1
,

min{|x2 − y2|, 1}
2

, . . . ,
min{|xN − yN |, 1}

N
,

min{|xN+1 − yN+1|, 1}
N + 1

, . . . ,

}
≤ sup

{
min{|x1 − y1|, 1}

1
,

min{|x2 − y2|, 1}
2

, . . . ,
min{|xN − yN |, 1}

N
,

1

N + 1
,

1

N + 2
, . . . ,

}
≤ sup

{
ε

1
,
ε

2
, . . . ,

ε

N
,

1

N + 1
,

1

N + 2
, . . . ,

}
(since y ∈ V )

≤ max

{
ε,

1

N + 1

}
≤ ε (by choice of N).
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Thus y ∈ Bdε (x). We conclude that V ⊆ Bdε (x), so the metric topology is contained in the product
topology.

Next, we check that the metric topology is finer than the product topology. Let W be a basis
element W =

∏
i∈NWi for the product topology; it suffices to show that W is open in the metric

topology. Let w = (wi)i∈I ∈ W ; we wish to find a ball Bdδ (w) contained in W . This ball will show
that w is an interior point of W in the metric topology, and thus that W is open in the metric
topology.

Let N ∈ N be such that Wi = R for all i ≥ N. Since Wi is open in R for all i, for each i there
is some δi > 0 so that the interval (wi − δi, wi + δi) ⊆ Wi. Moreover, (possibly by making each
interval even smaller), we can choose each δi so that δi < 1. Let

δ = min

{
δ1
1
,
δ2
2
, . . . ,

δN
N

}
,

and note that since N is finite, δ > 0. We claim that Bdδ (w) ⊆W .

So let z = (zi)i∈I ∈ Bdδ (w). Then for each i ∈ N,

min{|zi − wi|, 1}
i

≤ sup
i∈N

{
min{|zi − wi|, 1}

i

}
(by definition of sup)

= d(z, w) (by definition of d)

< δ (since z ∈ Bdδ (w))

= min

{
δ1
1
,
δ2
2
, . . . ,

δN
N

}
(by definition of δ)

≤ δj
j

for every j = 1, . . . , N , (by definition of min).

In particular, for i = 1, . . . , N ,

min{|zi − wi|, 1}
i

<
δi
i

min{|zi − wi|, 1} < δi.

Our assumption that δi < 1 ensures that the min{|zi − wi|, 1} must in fact equal |zi − wi|, and so
we deduce that |zi −wi| < δi for each i = 1, . . . , N , so zi ∈ (wi − δi, wi + δi). Hence z ∈W , and we
conclude that W is open in the metric topology. This concludes the proof.

31. Let (X, d) be a metric space. Show that the map d : X × X → R is continuous with respect to the
product topology on X and the standard topology on R. Show moreover that the topology on X induced
by d is the coarsest topology making d continuous.

32. Show that metrizability is a topological property. In other words, show that, if X and Y are homeomor-
phic topological spaces, then X is metrizable if and only if Y is.

Hint : Suppose that d is a metric on Y , and f : X → Y is a homeomorphism. Show that

D(x1, x2) = d(f(x1), f(x2))

defines a metric on X.

33. Let X be a finite set (of, say, n elements), and let d be a metric on X. What is the topology Td on X
induced by d? Show in particular that this topology will be the same for every possible metric d.
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34. We proved in class that, if d and d̃ are two metrics on a set X, then d and d̃ are topologically equivalent
if they satisfy the following condition: For each x ∈ X, there exist positive constants α, β > 0 such that
for every y ∈ X,

αd(x, y) ≤ d̃(x, y) ≤ β d(x, y).

(Note that α and β depend on x but are independent of y.) Show that the converse of this statement
fails: find a set X and equivalent metrics d and d̃ on X that fail this condition.

Solution. Consider the following two metrics on N: the metric dE induced by the Euclidean metric,
and the discrete metric dD. Both of these metrics induce the discrete topology on N, but they fail the
above condition. For example, fix x = 1 ∈ N. Then dD(1, n) ≤ 1 for all n ∈ N, but dE(1, n) = (n − 1)
grows without bound as n increases. The condition would require a constant α > 0 such that

α (n− 1) = αdE(1, n) ≤ dD(1, n) ≤ 1

for all n ∈ N. But these inequalities fail if we choose n > 1 + 1
α , and we conclude that no such α exists.

35. Let (X, dX) and (Y, dY ) be metric spaces. Suppose that f : X → Y is a function that preserves distances
in the sense that

dY

(
f(x1), f(x2)

)
= dX(x1, x2) for all x1, x2 ∈ X.

Show that f is continuous, and is an embedding of topological spaces. Such maps are called isometric
embeddings.

36. Let J be an uncountable index set, and consider the product RJ with the product topology associated
to the standard topology on R. In this question, we will show that this product is Hausdorff but not
metrizable. Define tthe subset A = {(xj)j∈J | xj = 1 for all by finitely many j ∈ J } of RJ . Let 0
denote the element (0)j∈J ∈ RJ that is constant 0 in every component.

(a) Consider an arbitrary basis element U =
∏
j∈J Uj for the product topology on R with 0 ∈ U .

Explain why U contains an element of A. Conclude that 0 ∈ A.

(b) Let (an)n∈N be a sequence of points an = (an,j)j∈J ∈ A. Explain why there is an index j ∈ J such
taht an,j = 1 for every n. Hint: J is uncountable.

(c) Construct a neighourhood V =
∏
j∈J Vj of 0 that does not contain an for any n ∈ N. Deduce that

the sequence (an)n∈N does not converge to 0.

(d) Conclude that the product RJ is Hausdorff, but not metrizable.

37. Let X be a topological space, and X∗ a quotient space of X. Show that X∗ is a T1–space if and only if
every equivalence class in X∗ is closed as a subset of X.

Solution. Let p : X → X∗ be the quotient map. We proved on Homework 6 #1(b) that X∗ is
a T1–space if and only if {x} is closed for every x ∈ X∗. But, we proved on Homework 8 #4(a) that,
under a quotient map, a set {x} is closed if and only if p−1({x}) ⊆ X is closed. But the subsets
p−1({x}) ⊆ X are precisely the equivalence classes defining X∗, which concludes the proof.

38. Let π1 : R×R→ R be the projection onto the first factor. Show that the restriction of π1 to the subset

{(x, y) | xy = 1} ∪ {(0, 0)}

is continuous and surjective, but is not a quotient map.
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Solution. Note that the set {(x, y) | xy = 1} is precisely the graph of the function 1
x on R \ {0}.

Since π1 is continuous, its restriction to any subspace is also continuous with respect to the subspace
topology.

To verify that the restriction of π1 surjects, we note that (0, 0) ∈ π−11 ({0}), and (x, 1x ) ∈ π−11 ({x}) for
all x 6= 0.

Finally, we will check that the restriction of π1 is not a quotient map. The subset {(x, y) | xy = 1} is
closed in R2, since it is the preimage of the closed set {1} under the continuous function

R2 → R
(x, y) 7→ xy.

However, the image of {(x, y) | xy = 1} under π1 is the subset R \ {0} of R, which is not closed in R.
Thus π1 is not a quotient map.

39. Let p : X → Y be a quotient map of topological spaces, and A ⊆ X a subset. Show that, if p is an open
map, then the restriction of p to A is also a quotient map.

40. Let X ⊆ R2 be the subspace {(x, n) | n ∈ N, x ∈ [0, 1]} consisting of the horizontal line [0, 1] × {n} for
each natural number n. Let Y ⊆ R2 be the subspace {(x, xn ) | n ∈ N, x ∈ [0, 1]} consisting of the line of
slope 1

n through the origin for each natural number n. Define a map g : X → Y by g(x, n) = (x, xn ).

(a) Verify that g is continuous and surjective.

(b) Determine whether g is a quotient map.

Hint: The map g is not a quoient map. Consider the set of points {( 1
n , n) | n ∈ N} in X, and

its image {( 1
n ,

1
n2 ) | n ∈ N} in Y . Show that this set is closed in X, but its image has limit point

(0, 0) and therefore is not closed.

41. Let X be a topological space and Y ⊆ X. Show that a separation of Y is precisely a pair of disjoint
nonempty sets A,B ⊆ Y whose union is Y , such that neither set contains a limit point of the other.

Solution. Recall from Homework #4 Problem 8 that the closure of a set C is the union of C and its
limit points. In particular, a set C is closed if and only if it contains all of its limit points.

Now, suppose that A and B are a separation of Y . Since A is closed in the subspace topology, it contains
all of its limit points in the subspace Y . Moreover, since A and B are disjoint and B ⊆ Y , B cannot
contain any limit points of A. Similarly A cannot containa any limit points of B.

Conversely, suppose that A and B are disjoint nonempty subsets of Y whose union is Y , such that
neither set contains a limit point of the other. Since B = Y \A does not contain any limit points of A,
we infer that A contains all of its limit points. Therefore, A is closed, and B = Y \A is open. The same
argument, reversing the roles of A and B, shows that A is open. We can therefore conclude that A and
B separate Y .

42. Let (An)n∈N be a sequence of connected subsets of a space X. Suppose that An ∩An+1 6= ∅ for each n.
Show that the union

⋃
nAn is connected.

43. Let (X, T ) be a topological space. Let {An | n ∈ N} be a family of connected subspaces in X such that
An+1 ⊆ An for every n ∈ N. Is

⋂
n∈NAn is necessarily connected?
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Solution. This statement is false. For example, let X = R with the cofinite topology. Consider
the family of subsets

An = [0, 1/n) ∪ [1, 1 + 1/n).

We will first verify that the set An is connected. Suppose that An = U ∪ V were a separation of An.
But then the instersection U ∩ V must be the complement of a finite set, so (U ∩ V ) ∩ An 6= ∅. This
contradicts the premise that U and V are a separation of An, and we conclude that An is connected.

Next, observe that

A =
⋂
n∈N

An = {0, 1},

and we will verify that A is disconnected. Note that R \ {1} is open in X, and (R \ {1}) ∩ A = {0}, so
{0} is open in the subspace topology on A. Similarly {1} is open in A. But then A = {0} ∪ {1} is a
separation of A, and A is disconnected.

44. Let (X, T ) be a topological space, and let A,B ⊆ X. Suppose A ∪ B and A ∩ B are connected. Prove
that if A and B are both closed or both open, then A and B are connected.

We will give a solution in the case that A and B are both open.

Lemma. If S is a subspace of a topological space Z, and S ⊆ Z is open, then U ⊆ S is open in the
subspace S if and only if U is open in Z.
Proof. A set U is open in S if and only if U = V ∩S for some open subset V ⊆ Z. Since the intersection
of two open sets is open, it follows that U is open in Z. Conversely, if U ⊆ S is open in Z, then U = U∩S
is open in S.

Solution. We will show that A is connected; the same argument will show that B is connected.
Suppose that A = C ∪D is a separation of A. Since A∩B is connected, from the lemma in class it must
be contained entirely in C or entirely in D. Say WLOG that A ∩ B ⊆ D. Now we claim that the sets
C ′ = C and D′ = D ∪B separate A ∪B. We must check four conditions:

• C ′ and D′ are nonempty.
This result follows since C ⊂ C ′ and D ⊂ D′ are nonempty by assumption that they separate A.

• C ′ and D′ are disjoint.
C does not intersect D, by assumption that C and D separate A. Moreover, C does not intersection
B, since C ⊆ A and all points in the intersection A ∩B lie in D.

• C ′ and D′ are open.
C is open in A, and therefore by the lemma above it is open in A ∪ B. Similarly, D is open in
A ∪B. Then, since B is open, D ∪B is open.

• (A ∪B) = (C ′ ∪D′) .
This follows since C ′ ∪D′ = C ∪ (D ∪B) = (C ∪D) ∪B = A ∪B.

So C ′ and D′ separate A ∪ B. This contradicts the premise that A ∪ B is connected, and we conclude
that A is connected.

45. Definition (Adherent sets). Let (X, TX) be a topological space, and let A,B ⊆ X. Then
A and B are called adherent if

(A ∩B) ∪ (A ∩B) 6= ∅.

(a) Give examples of disjoint adherent subsets of R (with the Euclidean metric).

Page 21



Math 590 Midterm Practice Questions March 2019

(b) Let (X, TX) be a topological space and A,B,C ⊆ X. Prove or give a counterexample: if A and B
are adherent, and B and C are adherent, then A and C are adherent.

(c) Let (X, TX) and (Y, TY ) be topological spaces, and let f : X → Y be a continuous map. Prove
that, if A and B are adherent subsets of X, then f(A) and f(B) are adherent subsets of Y .

(d) Let (X, TX) and (Y, TY ) be Hausdorff topological spaces. Suppose that f : X → Y has the property
that, whenever A and B are adherent subsets of X, then f(A) and f(B) are adherent subsets of Y .
Prove that f is continuous.

Solution. Recall from Homework #5 Problem 2(a) that a function f : X → Y is continuous if
and only if f(A) ⊆ f(A) for all A ⊆ X.

So suppose that f : X → Y has the property that, whenever A and B are adherent subsets of X,
then f(A) and f(B) are adherent subsets of Y . Let A ⊆ X. Our goal is to show that f(A) ⊆ f(A).

Let x ∈ A; we wish to show f(x) ∈ f(A). Observe that {x} and A are adherent sets, since

x ∈ (A ∩ {x}) ⊆ (A ∩ {x}) ∪ (A ∩ {x}).

Then, by assumption, f({x}) = {f(x)} and f(A) are adherent sets. This means that

(f(A) ∩ {f(x)}) ∪ (f(A) ∩ {f(x)}) 6= ∅.

But, since Y is Hausdorff, the point {f(x)} is closed, and hence {f(x)} = {f(x)}. So

(f(A) ∩ {f(x)}) ∪ (f(A) ∩ {f(x)}) 6= ∅.

This implies that f(x) ⊆ f(A). Hence f(A) ⊆ f(A), and we conclude that f is continuous.
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