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1. (20 points) Each of the following statements is either true or false. If the statement
holds in general, write “True”. Otherwise, write “False”. No justification necessary.

(a) Consider N with the standard topology. Let S = {(an)n∈N | an ∈ N, limn→∞ an = 0}
be the set of all sequences converging to zero. Then S is countable.

(b) The set {U ⊆ R | U is finite} ∪ {R} is a topology on R.

(c) Consider Q as a subspace of R with the standard topology. The subset {0} is open.

(d) Let X be a finite topological space. If X is a T1-space, then X is discrete.

(e) Let A be a subset of a topological space T . Then the set of limit points of A is
closed.

(f) If X is a T1-space, then limits of sequences in X are unique.

(g) Let T be a topology on a set X. If T has the T1 property, then T is finer than the
cofinite topology on X.
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(h) For spaces X and Y , let A ⊆ X and B ⊆ Y be closed sets. They A×B is a closed
subset of X × Y in the product topology.

(i) Let X and Y be topological spaces and consider X × Y with the product topology.
If U ⊆ X×Y is open, then U = UX ×UY for some open sets UX ⊆ X and UY ⊆ Y .

(j) Let {Xi}i∈I and {Yi}i∈I be families of nonempty topological spaces, and fi : Xi → Yi
a function for each i. Suppose that

∏
i∈I Xi and

∏
i∈I Yi are both given the product

topology, or both given the box topology. Then the function∏
fi :

∏
i∈I

Xi 7−→
∏
i∈I

Yi

(xi)i∈I 7−→
(
fi(xi)

)
i∈I

is continuous if and only if fi is continuous for each i.

(k) Let C ⊆ Rω be the set of all sequences (an)n∈N ∈ Rω that are eventually zero. Then
C is closed in the uniform topology.

(l) If a subspace A of a space X is connected, then ∂A is connected.

(m) For any index set J , the product (0, 1)J in the product topology is connected.
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(n) Let p : X → Y be a quotient map. If Y is a T1-space, then so is X.

(o) Consider X = R with the discrete topology. Then its one-point compactification
X̂ = X ∪ {∞} has the topology {U ⊆ X̂ | ∞ /∈ U} ∪ {X̂}.

(p) Let X be a locally compact Hausdorff space, and let X̂ be its one-point compact-
ification. Let f be a continuous map from X to a Hausdorff space Y . Then there
is at most one value f̂(∞) ∈ Y that would extend the function f to a continuous
function f̂ : X̂ → Y .

(q) The cofinite topology on R is separable but not second countable.

(r) The space N with the cofinite topology is a Baire space.

(s) Let X be a space. Then C (X,R) in the uniform topology is a Baire space.

(t) The set of functions {fn(x) = nx | n ∈ N} in C ([0, 1],R) is equicontinuous.
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2. (20 points) Each of the following statements is either true or false. If the statement
holds in general, write “True”. Otherwise, state a counterexample. No justification
necessary.

(i) If A ⊆ B, then A ⊆ B.

(ii) If A ⊆ B, then ∂A ⊆ ∂B.

(iii) Let f : X → Y be a map of topological spaces. If f is continuous, then f(A) ⊆ f(A)
for every A ⊆ X.

(iv) Let S be a subset of a topological space X, and suppose that the subspace topology
on S is the discrete topology. Then S is closed.

(v) Let {Xi}i∈I be a collection of metric spaces with the metric topology. Then their
product

∏
i∈I Xi is metrizable in the box topology.

(vi) Let A be a path-connected subspace of a space X. Then A is path-connected.

(vii) If X is a connected topological space, then so are all its quotient spaces.
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(viii) Let f : X → Y be an open map of topological spaces. Then the restriction of f to
any subspace of X is open (with respect to the subspace topology).

(ix) Let f : X → Y be a continuous invertible map, and suppose that on every connected
component of X the map f restricts to a homeomorphism to a connected component
of Y . Then f is a homeomorphism.

(x) There does not exist a path from a to d in the space X = {a, b, c, d} with the

topology
{
∅, {a}, {d}, {a, d}, {c, d}, {a, c, d}, X

}
.

(xi) Any compact space X is second countable.

(xii) Any second countable space X is compact.

(xiii) If X is complete with respect to a metric d, then X is complete with respect to any
metric equivalent to d.

(xiv) If a space X is compact, then X is limit point compact.
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(xv) The continuous image of a regular space is regular.

(xvi) Every discrete space is normal.

(xvii) A subspace of a separable space is separable.

(xviii) For a topological space X and a metric space Y the set of all continuous, bounded
functions in Y X is a closed subset of Y X in the uniform topology.

(xix) If (fn)n∈N is a convergent sequence of bounded continuous functions R→ R in the
compact-open topology, then the limit f is bounded.

(xx) Consider the set F = {f : [0, 1] → R | f(x) = ax2 + bx + c with a, b, c ∈ [0, 1]} of
continuous functions. Then any sequence of functions in F has a subsequence that
converges uniformly to some continuous function [0, 1]→ R.
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3. (a) (2 points) For each of the following sequences of elements of Rω, circle all the
topologies on Rω with respect to which the sequence converges. No justification
needed.

(i) a1 = (1, 1, 1, 1, 1, . . .)

a2 = (0, 2, 2, 2, 2, . . .)

a3 = (0, 0, 3, 3, 3, . . .)

a4 = (0, 0, 0, 4, 4, . . .)

...

product topology

uniform topology

box topology

(ii) b1 = (1, 1, 1, 1, 1, . . .)

b2 = (0, 1
2
, 1
2
, 1
2
, 1
2
, . . .)

b3 = (0, 0, 1
3
, 1
3
, 1
3
, . . .)

b4 = (0, 0, 0, 1
4
, 1
4
, . . .)

...

product topology

uniform topology

box topology

(b) (2 points) For each of the sequences of continuous functions fn : [0,∞)→ R, circle
all the topologies on C ([0,∞),R) with respect to which the sequence converges.

(i) fn(x) =

{
x
n
, x ∈ [0, n]

1, x > n

f3f2f1

topology of pointwise convergence

compact-open topology

uniform topology

(ii) fn(x) =

{
nx, x ∈ [0, 1

n
]

1, x > 1
n

f3 f2 f1
topology of pointwise convergence

compact-open topology

uniform topology
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(c) (2 points) Circle all terms that apply. The topology {(a,∞) | a ∈ R} ∪ {R} ∪ {∅}
on R is . . .

compact path-connected separable T4 (normal)

4. (4 points) Let X and Y be topological spaces. We saw in class that, in general, the
projection map πX : X × Y → X may not be closed. Show that, if Y is compact, then
πX is a closed map.
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(Blank page for extra work)
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