Name: _____ Score (Out of 9 points):

1. (6 points) State which of the following sets is countable by circling either "Countable" or "Uncountable". No justification necessary.

•	The set $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$	Countable	Uncountable
•	The set of all finite subsets of $\mathbb Q$	Countable	Uncountable
•	The set of irrational numbers $\mathbb{R} \setminus \mathbb{Q}$	Countable	Uncountable
•	The set of all sequences $(a_n)_{n \in \mathbb{N}}$ with $a_n \in \mathbb{Z}$ for all n	Countable	Uncountable
•	The set of monic polynomials with integer coefficients $\{x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0 \mid a_i \in \mathbb{Z}, n \in \mathbb{N}\}$	Countable	Uncountable
•	The set of all real numbers x that can be repre- sented by a decimal expansion involving only the	Countable	Uncountable

- digits 0 and 1
- 2. (3 points) Let $S = \{0, 1\}$ and let S^{ω} denote the Cartesian product

$$S^{\omega} = S \times S \times S \times S \times \cdots$$

of a countably infinite number of copies of S. (So an element of S^{ω} is an ordered tuple such as

$$(0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, \cdots)).$$

Show that S^{ω} is not countable.