Name: \qquad Score (Out of 9 points):

1. (6 points) State which of the following sets is countable by circling either "Countable" or "Uncountable". No justifcation necessary.

- The set $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$ Countable Uncountable
- The set of all finite subsets of \mathbb{Q}

Countable Uncountable

- The set of irrational numbers $\mathbb{R} \backslash \mathbb{Q}$

Countable Uncountable

- The set of all sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ with $a_{n} \in \mathbb{Z}$ for all n

Countable Uncountable
The set of monic polynomials with integer coefficients

- $\left\{x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \mid a_{i} \in \mathbb{Z}, n \in \mathbb{N}\right\}$

Countable Uncountable
The set of all real numbers x that can be repre-

- sented by a decimal expansion involving only the

Countable Uncountable digits 0 and 1
2. (3 points) Let $S=\{0,1\}$ and let S^{ω} denote the Cartesian product

$$
S^{\omega}=S \times S \times S \times S \times \cdots
$$

of a countably infinite number of copies of S. (So an element of S^{ω} is an ordered tuple such as

$$
(0,0,1,0,1,1,1,0,1,0,1,1,0,0,0, \cdots))
$$

Show that S^{ω} is not countable.

Page 2

