Name: $\qquad$ Score (Out of 7 points):

1. (3 points) Let $X$ be a set and let $p \in X$. Prove that the following is a topology on X :

$$
\mathcal{T}=\{X\} \cup\{U \subseteq X \mid p \notin U\} .
$$

Solution: We need to check the three conditions.

- $X \in \mathcal{T}$ by construction, and $\varnothing \in \mathcal{T}$ since $p \notin \varnothing$.
- Let $\left\{U_{\alpha}\right\}_{\alpha \in I} \subseteq \mathcal{T}$. If $U_{\alpha}=X$ for some index $\alpha$, then $\bigcup_{\alpha \in I} U_{\alpha}=X \in \mathcal{T}$.

If $U_{\alpha}$ is not $X$ for any index $\alpha$, then $p \notin U_{\alpha}$ for any $\alpha \in I$. It follows that $p \notin \bigcup_{\alpha \in I} U_{\alpha}$, so $\bigcup_{\alpha \in I} U_{\alpha} \in \mathcal{T}$.

- Suppose that $U, V \in \mathcal{T}$. If $U=V$ then $U \cap V=U \in \mathcal{T}$. If $U \neq V$, then at least one of $U$ and $V$ does not contain $p$, so $p \notin U \cap V$, and $U \cap V \in \mathcal{T}$.

We conclude that $\mathcal{T}$ satisfies the definition of a topology on $X$.
2. (4 points) Let $n \in \mathbb{N}$ and let $\left(X_{1}, \mathcal{T}_{1}\right),\left(X_{2}, \mathcal{T}_{2}\right), \ldots,\left(X_{n}, \mathcal{T}_{n}\right)$ be topological spaces. Consider the topology $\mathcal{T}$ on $X_{1} \times X_{2} \times \cdots \times X_{n}$ generated by the basis

$$
\mathcal{B}=\left\{U_{1} \times U_{2} \times \cdots \times U_{n} \mid U_{i} \in \mathcal{T}_{i} \text { for all } i\right\} .
$$

(You do not need to show that this is a basis.) Let $\left(X, \mathcal{T}_{X}\right)$ be a topological space, and for each $i=1, \ldots, n$ let $f_{i}: X \rightarrow X_{i}$ be a function. Define

$$
\begin{aligned}
f: X & \longrightarrow X_{1} \times X_{2} \times \cdots \times X_{n} \\
x & \longmapsto\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
\end{aligned}
$$

Show that the function $f$ is continuous (with respect to the topologies $\mathcal{T}_{X}$ and $\mathcal{T}$ ) if and only if each coordinate function $f_{i}$ is continuous (with respect to the topologies $\mathcal{T}_{X}$ and $\mathcal{T}_{i}$ ).

Solution: Let us first suppose that the functions $f_{i}: X \rightarrow X_{i}$ are continuous for each $i$. This means that, for every open subset $U \subseteq X_{i}$, the subset $f_{i}^{-1}(U)$ is open. To check that $f$ is continuous, by Homework \#3 Problem 6, it suffices to check that $f^{-1}(B)$ is open for every basis element $B \subseteq X_{1} \times X_{2} \times \cdots \times X_{n}$. So choose an arbitrary basis element $B=U_{1} \times U_{2} \times \cdots \times U_{n}$. Then

$$
\begin{aligned}
f^{-1}\left(U_{1} \times U_{2} \times \cdots \times U_{n}\right) & =\left\{x \in X \mid f(x) \in U_{1} \times U_{2} \times \cdots \times U_{n}\right\} \\
& =\left\{x \in X \mid f_{1}(x) \in U_{1}, \text { and } f_{2}(x) \in U_{2}, \ldots, \text { and } f_{n}(x) \in U_{n}\right\} \\
& =\left\{x \in X \mid x \in f_{1}^{-1}\left(U_{1}\right), \text { and } x \in f_{2}^{-1}\left(U_{2}\right), \ldots, \text { and } x \in f_{n}^{-1}\left(U_{n}\right)\right\} \\
& =f_{1}^{-1}\left(U_{1}\right) \cap f_{2}^{-1}\left(U_{2}\right) \cap \cdots \cap f_{n}^{-1}\left(U_{n}\right) .
\end{aligned}
$$

By assumption, this is a finite intersection of open sets, and therefore is open. We conclude that $f$ is continuous.

Next assume that $f$ is continuous, and fix $i \in\{1,2, \ldots, n\}$. Let $U$ be an open set in $X_{i}$. Since $f$ is continuous, the preimage under $f$ of the open set

$$
X_{1} \times X_{2} \times \cdots \times X_{i-1} \times U \times X_{i+1} \times \cdots \times X_{n}
$$

is open in $X$. But this preimage is

$$
\begin{aligned}
& f^{-1}\left(X_{1} \times X_{2} \times \cdots \times X_{i-1} \times U \times X_{i+1} \times \cdots \times X_{n}\right) \\
& =f_{1}^{-1}\left(X_{1}\right) \cap f_{2}^{-1}\left(X_{2}\right) \cap \cdots \cap f_{i-1}^{-1}\left(X_{i-1}\right) \times f_{i}^{-1}(U) \cap f_{i+1}^{-1}\left(X_{i+1}\right) \cap \cdots \cap f_{n}^{-1}\left(X_{n}\right) \\
& =X \cap X \cap \cdots \cap X \cap f_{i}^{-1}(U) \cap X \cap \cdots \cap X \\
& =f_{i}^{-1}(U) .
\end{aligned}
$$

Thus $f_{i}^{-1}(U)$ is open, and we conclude that $f_{i}$ is continuous.
Alternate argument: Next assume that $f$ is continuous, and fix $i \in\{1,2, \ldots, n\}$. Then $f_{i}$ is the composition $\pi_{i} \circ f$ of the continuous function $f$ and the continuous projection map $\pi_{i}: X_{1} \times X_{2} \times \cdots \times X_{n} \rightarrow X_{i}$, and is therefore continuous.

