Name: ______ Score (Out of 7 points):

1. (3 points) Let X be a set and let $p \in X$. Prove that the following is a topology on X:

$$\mathcal{T} = \{X\} \cup \{U \subseteq X \mid p \notin U\}.$$

Solution: We need to check the three conditions.

- $X \in \mathcal{T}$ by construction, and $\emptyset \in \mathcal{T}$ since $p \notin \emptyset$.
- Let $\{U_{\alpha}\}_{\alpha\in I}\subseteq \mathcal{T}$. If $U_{\alpha}=X$ for some index α , then $\bigcup_{\alpha\in I}U_{\alpha}=X\in \mathcal{T}$. If U_{α} is not X for any index α , then $p\notin U_{\alpha}$ for any $\alpha\in I$. It follows that $p\notin \bigcup_{\alpha\in I}U_{\alpha}$, so $\bigcup_{\alpha\in I}U_{\alpha}\in \mathcal{T}$.
- Suppose that $U, V \in \mathcal{T}$. If U = V then $U \cap V = U \in \mathcal{T}$. If $U \neq V$, then at least one of U and V does not contain p, so $p \notin U \cap V$, and $U \cap V \in \mathcal{T}$.

We conclude that \mathcal{T} satisfies the definition of a topology on X.

2. (4 points) Let $n \in \mathbb{N}$ and let $(X_1, \mathcal{T}_1), (X_2, \mathcal{T}_2), \dots, (X_n, \mathcal{T}_n)$ be topological spaces. Consider the topology \mathcal{T} on $X_1 \times X_2 \times \cdots \times X_n$ generated by the basis

$$\mathcal{B} = \{U_1 \times U_2 \times \cdots \times U_n \mid U_i \in \mathcal{T}_i \text{ for all } i\}.$$

(You do not need to show that this is a basis.) Let (X, \mathcal{T}_X) be a topological space, and for each $i = 1, \ldots, n$ let $f_i : X \to X_i$ be a function. Define

$$f: X \longrightarrow X_1 \times X_2 \times \cdots \times X_n$$

 $x \longmapsto (f_1(x), f_2(x), \dots, f_n(x))$

Show that the function f is continuous (with respect to the topologies \mathcal{T}_X and \mathcal{T}) if and only if each coordinate function f_i is continuous (with respect to the topologies \mathcal{T}_X and \mathcal{T}_i).

Solution: Let us first suppose that the functions $f_i: X \to X_i$ are continuous for each i. This means that, for every open subset $U \subseteq X_i$, the subset $f_i^{-1}(U)$ is open. To check that f is continuous, by Homework #3 Problem 6, it suffices to check that $f^{-1}(B)$ is open for every basis element $B \subseteq X_1 \times X_2 \times \cdots \times X_n$. So choose an arbitrary basis element $B = U_1 \times U_2 \times \cdots \times U_n$. Then

$$f^{-1}(U_1 \times U_2 \times \dots \times U_n) = \{x \in X \mid f(x) \in U_1 \times U_2 \times \dots \times U_n\}$$

$$= \{x \in X \mid f_1(x) \in U_1, \text{ and } f_2(x) \in U_2, \dots, \text{ and } f_n(x) \in U_n\}$$

$$= \{x \in X \mid x \in f_1^{-1}(U_1), \text{ and } x \in f_2^{-1}(U_2), \dots, \text{ and } x \in f_n^{-1}(U_n)\}$$

$$= f_1^{-1}(U_1) \cap f_2^{-1}(U_2) \cap \dots \cap f_n^{-1}(U_n).$$

By assumption, this is a finite intersection of open sets, and therefore is open. We conclude that f is continuous.

Next assume that f is continuous, and fix $i \in \{1, 2, ..., n\}$. Let U be an open set in X_i . Since f is continuous, the preimage under f of the open set

$$X_1 \times X_2 \times \cdots \times X_{i-1} \times U \times X_{i+1} \times \cdots \times X_n$$

is open in X. But this preimage is

$$f^{-1}(X_1 \times X_2 \times \dots \times X_{i-1} \times U \times X_{i+1} \times \dots \times X_n)$$

$$= f_1^{-1}(X_1) \cap f_2^{-1}(X_2) \cap \dots \cap f_{i-1}^{-1}(X_{i-1}) \times f_i^{-1}(U) \cap f_{i+1}^{-1}(X_{i+1}) \cap \dots \cap f_n^{-1}(X_n)$$

$$= X \cap X \cap \dots \cap X \cap f_i^{-1}(U) \cap X \cap \dots \cap X$$

$$= f_i^{-1}(U).$$

Thus $f_i^{-1}(U)$ is open, and we conclude that f_i is continuous.

Alternate argument: Next assume that f is continuous, and fix $i \in \{1, 2, ..., n\}$. Then f_i is the composition $\pi_i \circ f$ of the continuous function f and the continuous projection map $\pi_i : X_1 \times X_2 \times \cdots \times X_n \to X_i$, and is therefore continuous.