Name: \qquad Score (Out of 9 points):

1. (6 points) Compute the interior, closure, boundary, and set of all limit points of the following sets S. No justification necessary.
(a) Let $X=\{a, b, c, d\}$ with the topology $\{\varnothing,\{a\},\{b\},\{a, b\},\{a, b, c\},\{a, b, c, d\}\}, S=\{b, c\}$.
$\operatorname{Int}(S)$: \qquad $\bar{S}:$ \qquad $\partial S:$ \qquad Limit points: \qquad
(b) Let $S=(-\infty, 0) \cup\{1\} \subseteq \mathbb{R}$, where \mathbb{R} has the topology $\{(a, \infty) \mid a \in \mathbb{R}\} \cup\{\varnothing\} \cup\{\mathbb{R}\}$.
$\operatorname{Int}(S): \longrightarrow \quad \bar{S}: \ldots \quad$ Limit points:
(c) Let $S=\{0,1\} \subseteq \mathbb{R}$, where \mathbb{R} has the topology $\{U \mid 0 \in U\} \cup\{\varnothing\}$.
$\operatorname{Int}(S): \simeq \bar{S}: \longrightarrow \partial S: \longrightarrow$ Limit points: \qquad
2. (3 points) Each of the following statements is either true or false. If the statement holds in general, write "True". Otherwise, state an example of a topological space X and a subset S for which it fails. No justification necessary.

Note: You can get partial credit for correctly writing "False" without a counterexample.
(a) Let (X, \mathcal{T}) be a topological space, and $S \subseteq X$. Then every point of $\operatorname{Int}(S)$ is a limit point of S.
(b) Let (X, \mathcal{T}) be a topological space, and $S \subseteq X$. Then $\bar{S}=\overline{\operatorname{Int}(S)}$.
(c) Let (X, \mathcal{T}) be a topological space, and $S \subseteq X$. Then $\partial(\partial S)=\partial S$.

