Name: _____ Score (Out of 9 points):

1. (6 points) Compute the interior, closure, boundary, and set of all limit points of the following sets S. No justification necessary.

(a) Let
$$X = \{a, b, c, d\}$$
 with the topology $\Big\{ \varnothing, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\} \Big\}, S = \{b, c\}.$

Int(S): _____ \overline{S} : _____ ∂S : _____ Limit points: _____

(b) Let $S = (-\infty, 0) \cup \{1\} \subseteq \mathbb{R}$, where \mathbb{R} has the topology $\{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\emptyset\} \cup \{\mathbb{R}\}$.

Int(S): _____ \overline{S} : _____ ∂S : _____ Limit points: _____

(c) Let $S = \{0, 1\} \subseteq \mathbb{R}$, where \mathbb{R} has the topology $\{U \mid 0 \in U\} \cup \{\emptyset\}$.

Int(S): _____ \overline{S} : _____ ∂S : _____ Limit points: _____

2. (3 points) Each of the following statements is either true or false. If the statement holds in general, write "True". Otherwise, state an example of a topological space X and a subset S for which it fails. No justification necessary.

Note: You can get partial credit for correctly writing "False" without a counterexample.

- (a) Let (X, \mathcal{T}) be a topological space, and $S \subseteq X$. Then every point of Int(S) is a limit point of S.
- (b) Let (X, \mathcal{T}) be a topological space, and $S \subseteq X$. Then $\overline{S} = \overline{\text{Int}(S)}$.
- (c) Let (X, \mathcal{T}) be a topological space, and $S \subseteq X$. Then $\partial(\partial S) = \partial S$.