Name: ______ Score (Out of 9 points):

- 1. (6 points) Compute the interior, closure, boundary, and set of all limit points of the following sets S. No justification necessary.
 - (a) Let $X = \{a, b, c, d\}$ with the topology $\{\varnothing, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}\}, S = \{b, c\}.$
- $\operatorname{Int}(S) : \underline{\hspace{1cm}} \{b\} \qquad \overline{S} : \underline{\hspace{1cm}} \{b,c,d\} \qquad \partial S : \underline{\hspace{1cm}} \{c,d\} \qquad \operatorname{Limit points} : \underline{\hspace{1cm}} \{c,d\}$
 - (b) Let $S = (-\infty, 0) \cup \{1\} \subseteq \mathbb{R}$, where \mathbb{R} has the topology $\{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\emptyset\} \cup \{\mathbb{R}\}$.
- $\operatorname{Int}(S) : \underline{\hspace{1cm}} \varnothing \qquad \overline{S} : \underline{\hspace{1cm}} (-\infty, 1] \qquad \partial S : \underline{\hspace{1cm}} (-\infty, 1] \qquad \operatorname{Limit points} : \underline{\hspace{1cm}} (-\infty, 1)$
 - (c) Let $S = \{0, 1\} \subseteq \mathbb{R}$, where \mathbb{R} has the topology $\{U \mid 0 \in U\} \cup \{\emptyset\}$.
- $\operatorname{Int}(S) : \underline{\qquad \{0,1\} \qquad} \overline{S} : \underline{\qquad} \mathbb{R} \qquad \partial S : \underline{\qquad} \mathbb{R} \backslash \{0,1\} \qquad \operatorname{Limit points} : \underline{\qquad} \mathbb{R} \backslash \{0\}$

2. (3 points) Each of the following statements is either true or false. If the statement holds in general, write "True". Otherwise, state an example of a topological space X and a subset S for which it fails. No justification necessary.

Note: You can get partial credit for correctly writing "False" without a counterexample.

(a) Let (X, \mathcal{T}) be a topological space, and $S \subseteq X$. Then every point of $\mathrm{Int}(S)$ is a limit point of S.

False. For example, consider the topological space $X = \{0, 1\}$ with the discrete topology, and the subset $S = \{0\}$. Then 0 is an interior point, but not a limit point, of S.

(b) Let (X, \mathcal{T}) be a topological space, and $S \subseteq X$. Then $\overline{S} = \overline{\operatorname{Int}(S)}$.

False. For example, \mathbb{R} with the standard topology, and the subset $S = \mathbb{Q}$. Then $\overline{\mathbb{Q}} = \mathbb{R}$, but $\overline{\mathrm{Int}(\mathbb{Q})} = \overline{\varnothing} = \varnothing$.

(c) Let (X, \mathcal{T}) be a topological space, and $S \subseteq X$. Then $\partial(\partial S) = \partial S$.

False. For example, \mathbb{R} with the standard topology, and the subset $S = \mathbb{Q}$. Then $\partial \mathbb{Q} = \mathbb{R}$, but $\partial(\partial \mathbb{Q}) = \partial \mathbb{R} = \emptyset$.