Name: _____ Score (Out of 8 points):

- 1. (4 points) Find the set of all limits of the following sequences. If the sequences does not converge to any point, write "Does not converge". No justification necessary.
 - Let $X=\{a,b,c,d\}$ have the topology $\{\varnothing,\{a\},\{b\},\{a,b\},\{a,b,c,d\}\}.$
 - (i) $a, b, a, b, a, b, a, b, \cdots$
 - Let \mathbb{R} have the topology $\mathcal{T} = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\emptyset\} \cup \{\mathbb{R}\}.$
 - (ii) $0, 0, 0, 0, 0, 0, 0, 0, \cdots$
 - (iii) $(-n)_{n\in\mathbb{N}}$
 - Let \mathbb{R} have the topology $\mathcal{T} = \{\emptyset\} \cup \{U \subseteq \mathbb{R} \mid 0 \in U\}.$
 - (iv) $0, 0, 0, 0, 0, 0, 0, 0, \cdots$

2. (4 points) Show that a topological space X is Hausdorff if and only if, for each $x \in X$,

$$\bigcap_{U \text{ a neighbourhood of } x} \overline{U} = \{x\}.$$