Name: _____ Score (Out of 8 points):

- 1. (4 points) Find the set of all limits of the following sequences. If the sequences does not converge to any point, write "Does not converge". No justification necessary.
 - Let $X = \{a, b, c, d\}$ have the topology $\mathcal{T} = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c, d\}\}.$
 - (i) $a, b, a, b, a, b, a, b, \cdots$ Solution: $\{c, d\}$
 - Let \mathbb{R} have the topology $\mathcal{T} = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\emptyset\} \cup \{\mathbb{R}\}.$
 - (ii) 0, 0, 0, 0, 0, 0, 0, 0, ... Solution: $(-\infty, 0]$
 - (iii) $(-n)_{n \in \mathbb{N}}$ Solution: Does not converge
 - Let \mathbb{R} have the topology $\mathcal{T} = \{ \varnothing \} \cup \{ U \subseteq \mathbb{R} \mid 0 \in U \}.$
 - (iv) 0, 0, 0, 0, 0, 0, 0, 0, \cdots Solution: \mathbb{R}

2. (4 points) Show that a topological space X is Hausdorff if and only if, for each $x \in X$,

$$\bigcap_{\substack{U \text{ a neighbourhood of } x}} \overline{U} = \{x\}.$$

Solution. Since $x \in U \subseteq \overline{U}$ for all neighbourhoods U of x, it is clear that

$$igcap_U$$
 a neighbourhood of x $\overline{U} \supseteq \{x\}$

for any topological space X. Hence, our goal is to show that

$$\bigcap_{\substack{U \text{ a neighbourhood of } x}} \overline{U} \subseteq \{x\}$$

if and only if X is Hausdorff.

First suppose that X is Hausdorff. This means, for any $x, y \in X$ with $y \neq x$, there are disjoint neighbourhoods U_x of x and U_y of y. But, since y has a neighbourhood that does not intersect U_x , we can conclude that $y \notin U_x$. Hence for all $y \neq x$,

$$y \notin \bigcap_{U \text{ a neighbourhood of } x} \overline{U}.$$

We conclude that, if X is Hausdorff, then for any $x \in X$,

$$\bigcap_{\substack{U \text{ a neighbourhood of } x}} \overline{U} \subseteq \{x\}.$$

Next suppose that

$$\bigcap_{\substack{U \text{ a neighbourhood of } x}} \overline{U} \subseteq \{x\}$$

for all $x \in X$, and consider any pair of distinct points $x, y \in X$. By assumption, there must be some neighbourhood U_x of x so that $y \notin \overline{U_x}$. This means that there is some neighbourhood U_y of y that does not intersect U_x . Thus x and y have disjoint neighbourhoods U_x and U_y , and we conclude that X is Hausdorff as desired.