Name: _____ Score (Out of 5 points):

1. (1 point) Let $p : \mathbb{R} \to \{a, b, c, d\}$ be the following map from the \mathbb{R} (with the standard topology) to the set $\{a, b, c, d\}$,

$$p : \mathbb{R} \longrightarrow \{a, b, c, d\}$$
$$p(x) = \begin{cases} a, x \in (-\infty, 1) \\ b, x = 1, 2 \\ c, x \in (1, 2) \cup (2, 3) \\ d, x \in [3, \infty). \end{cases}$$

Write the induced quotient topology on $\{a, b, c, d\}$.

Solution. The quotient topology is $\Big\{ \emptyset, \{a\}, \{c\}, \{a, c\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{a, b, c, d\} \Big\}.$

2. (4 points) Let (X, d) be a metric space with at least two elements. Show that there exist nonempty open sets in X whose closures are disjoint.

Solution. Suppose that X contains the two distinct elements x and y, and suppose that d(x, y) = r. Then r > 0 by definition of a metric, and so the sets $B_x = B_{\frac{r}{4}}(x)$ and $B_y = B_{\frac{r}{4}}(y)$ are open balls around x and y, respectively. We will show that these two nonempty open sets have disjoint closure.

Suppose (for the sake of contradiction) that z were an element in $\overline{B_x}$ and $\overline{B_y}$. This means that every open neighbourhood U_z of z contains a point in B_x and contains a point in B_y . So consider the open neighbourhood $U_z = B_{\frac{r}{4}}(z)$.

By assumption this neighbourhood contains a point $\tilde{x} \in B_x$.

But then observe that

$$d(x,z) \le d(x,\tilde{x}) + d(\tilde{x},z)$$

$$< \frac{r}{4} + \frac{r}{4} \qquad (\text{since } \tilde{x} \in B_{\frac{r}{4}}(x) \text{ and } \tilde{x} \in B_{\frac{r}{4}}(z))$$

$$= \frac{r}{2}$$

Since $B_{\frac{r}{4}}(z)$ must also contain a point of B_y , the same argument shows that $d(y, z) < \frac{r}{2}$. But then

$$d(x,y) \le d(x,z) + d(z,y)$$
$$< \frac{r}{2} + \frac{r}{2}$$
$$= r$$

which contradicts our premise that d(x, y) = r. Thus no such element z can exist, and we conclude that $\overline{B_x} \cap \overline{B_y} = \emptyset$ as claimed.