Name: \qquad Score (Out of 5 points):

1. (1 point) Let $p: \mathbb{R} \rightarrow\{a, b, c, d\}$ be the following map from the \mathbb{R} (with the standard topology) to the set $\{a, b, c, d\}$,

$$
\begin{aligned}
p: \mathbb{R} & \longrightarrow\{a, b, c, d\} \\
p(x) & =\left\{\begin{array}{l}
a, x \in(-\infty, 1) \\
b, x=1,2 \\
c, x \in(1,2) \cup(2,3) \\
d, x \in[3, \infty)
\end{array}\right.
\end{aligned}
$$

Write the induced quotient topology on $\{a, b, c, d\}$.

Solution. The quotient topology is $\{\varnothing,\{a\},\{c\},\{a, c\},\{c, d\},\{a, b, c\},\{a, c, d\},\{a, b, c, d\}\}$.
2. (4 points) Let (X, d) be a metric space with at least two elements. Show that there exist nonempty open sets in X whose closures are disjoint.

Solution. Suppose that X contains the two distinct elements x and y, and suppose that $d(x, y)=r$. Then $r>0$ by definition of a metric, and so the sets $B_{x}=B_{\frac{r}{4}}(x)$ and $B_{y}=B_{\frac{r}{4}}(y)$ are open balls around x and y, respectively. We will show that these two nonempty open sets have disjoint closure.
Suppose (for the sake of contradiction) that z were an element in $\overline{B_{x}}$ and $\overline{B_{y}}$. This means that every open neighbourhood U_{z} of z contains a point in B_{x} and contains a point in B_{y}. So consider the open neighbourhood $U_{z}=B_{\frac{r}{4}}(z)$.
By assumption this neighbourhood contains a point $\tilde{x} \in B_{x}$.

But then observe that

$$
\begin{aligned}
d(x, z) & \leq d(x, \tilde{x})+d(\tilde{x}, z) \\
& <\frac{r}{4}+\frac{r}{4} \quad\left(\text { since } \tilde{x} \in B_{\frac{r}{4}}(x) \text { and } \tilde{x} \in B_{\frac{r}{4}}(z)\right) \\
& =\frac{r}{2}
\end{aligned}
$$

Since $B_{\frac{r}{4}}(z)$ must also contain a point of B_{y}, the same argument shows that $d(y, z)<\frac{r}{2}$. But then

$$
\begin{aligned}
d(x, y) & \leq d(x, z)+d(z, y) \\
& <\frac{r}{2}+\frac{r}{2} \\
& =r
\end{aligned}
$$

which contradicts our premise that $d(x, y)=r$. Thus no such element z can exist, and we conclude that $\overline{B_{x}} \cap \overline{B_{y}}=\varnothing$ as claimed.

