Name: _____ Score (Out of 12 points):

- 1. (8 points) State which of the following topologies on \mathbb{R} are "first countable", "second countable", or neither, by circling the appropriate term(s). No justification necessary.
 - $(\mathbb{R}, \text{ standard topology})$ ٠ (first countable) (second countable) $(\mathbb{R}, \text{discrete topology})$ (first countable) second countable $(\mathbb{R}, \text{ indiscrete topology})$ • (first countable) (second countable) $(\mathbb{R}, \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\emptyset\} \cup \{\mathbb{R}\})$ (first countable) (second countable) $(\mathbb{R}, \{U \mid 0 \notin U\} \cup \{\mathbb{R}\})$ (first countable) second countable $(\mathbb{R}, \text{ cofinite})$ first countable second countable $(\mathbb{R}, \text{cocountable})$ first countable second countable $(\mathbb{R}, \text{ basis } \{[a, b) \mid a, b \in \mathbb{R}\})$ (first countable) second countable

- Math 590
- 2. (4 points) Let X be a compact metric space. Prove that X is second countable.

Solution. Fix *n*, and consider the cover of *X* by the balls $\left\{B_{\frac{1}{n}}(x) \mid x \in X\right\}$. Since *X* is compact, there is a finite subcover by balls

$$B_{\frac{1}{n}}(x_{n,1}), B_{\frac{1}{n}}(x_{n,2}), \dots B_{\frac{1}{n}}(x_{n,N_n}).$$

We claim that the set

$$\mathcal{B} = \left\{ B_{\frac{1}{n}}(x_{n,i}) \mid n \in \mathbb{N}, \ i = 1, \dots, N_n \right\}$$

is a countable basis for X. The set \mathcal{B} is countable since it is indexed by a countable union of the finite sets $\{1, 2, \ldots, N_n\}$. We must prove that it generates the metric topology.

To show that \mathcal{B} is a basis for the metric topology, it suffices to show the following: for every open subset U of X and every point x_0 in U, there is some basis element $B \in \mathcal{B}$ such that $x_0 \in B \subseteq U$.

So let U be an open subset in X, and let $x_0 \in U$. Then we proved that there exists some r > 0 so that $B_r(x_0) \subseteq U$.

Choose *n* large enough that $\frac{1}{n} < \frac{r}{2}$, and choose an element of \mathcal{B} of the form $B_{\frac{1}{n}}(x)$ that contains x_0 . Such a basis element exists, since by construction the balls of radius $\frac{1}{n}$ cover X.

Then, by the triangle equality, any point z in $B_{\frac{1}{r}}(x)$ is distance at most r from x_0 :

$$d(x_0,z) \leq d(x_0,x) + d(x,z) < \frac{1}{n} + \frac{1}{n} = \frac{2}{n} < r.$$

So $z \in B_r(x_0)$.

This implies that $x_0 \in B_{\frac{1}{n}}(x) \subseteq B_r(x_0) \subseteq U$, which concludes the proof that \mathcal{B} generates the metric topology on X.