Name: \qquad Score (Out of 12 points):

1. (8 points) State which of the following topologies on \mathbb{R} are "first countable", "second countable", or neither, by circling the appropriate term(s). No justifcation necessary.

- (\mathbb{R}, standard topology)

```
first countable second countable
```

- (\mathbb{R}, discrete topology)
first countable second countable
- $(\mathbb{R}$, indiscrete topology $)$
- $(\mathbb{R},\{(a, \infty) \mid a \in \mathbb{R}\} \cup\{\varnothing\} \cup\{\mathbb{R}\})$
- $(\mathbb{R},\{U \mid 0 \notin U\} \cup\{\mathbb{R}\})$
first countable second countable
- $(\mathbb{R}$, cofinite)

```
first countable second countable
```

- (\mathbb{R}, cocountable)

```
first countable second countable
```

- (\mathbb{R}, basis $\{[a, b) \mid a, b \in \mathbb{R}\})$

2. (4 points) Let X be a compact metric space. Prove that X is second countable.

Solution. Fix n, and consider the cover of X by the balls $\left\{\left.B_{\frac{1}{n}}(x) \right\rvert\, x \in X\right\}$. Since X is compact, there is a finite subcover by balls

$$
B_{\frac{1}{n}}\left(x_{n, 1}\right), B_{\frac{1}{n}}\left(x_{n, 2}\right), \ldots B_{\frac{1}{n}}\left(x_{n, N_{n}}\right) .
$$

We claim that the set

$$
\mathcal{B}=\left\{\left.B_{\frac{1}{n}}\left(x_{n, i}\right) \right\rvert\, n \in \mathbb{N}, i=1, \ldots, N_{n}\right\}
$$

is a countable basis for X. The set \mathcal{B} is countable since it is indexed by a countable union of the finite sets $\left\{1,2, \ldots, N_{n}\right\}$. We must prove that it generates the metric topology.
To show that \mathcal{B} is a basis for the metric topology, it suffices to show the following: for every open subset U of X and every point x_{0} in U, there is some basis element $B \in \mathcal{B}$ such that $x_{0} \in B \subseteq U$.
So let U be an open subset in X, and let $x_{0} \in U$. Then we proved that there exists some $r>0$ so that $B_{r}\left(x_{0}\right) \subseteq U$.
Choose n large enough that $\frac{1}{n}<\frac{r}{2}$, and choose an element of \mathcal{B} of the form $B_{\frac{1}{n}}(x)$ that contains x_{0}. Such a basis element exists, since by construction the balls of radius $\frac{1}{n}$ cover X.

Then, by the triangle equality, any point z in $B_{\frac{1}{n}}(x)$ is distance at most r from x_{0} :

$$
d\left(x_{0}, z\right) \leq d\left(x_{0}, x\right)+d(x, z)<\frac{1}{n}+\frac{1}{n}=\frac{2}{n}<r .
$$

So $z \in B_{r}\left(x_{0}\right)$.
This implies that $x_{0} \in B_{\frac{1}{n}}(x) \subseteq B_{r}\left(x_{0}\right) \subseteq U$, which concludes the proof that \mathcal{B} generates the metric topology on X.

