Name: _____ Score (Out of 8 points):

- 1. Let (X, d) be a metric space.
 - (a) (2 points) Let $\mathscr{B}(X,\mathbb{R})$ denote the set of bounded functions $f: X \to \mathbb{R}$, where \mathbb{R} has the Euclidean metric. Explain how to combine our results from class to show that $\mathscr{B}(X,\mathbb{R})$ is a complete metric space with respect to the sup metric ρ .

(b) (3 points) Fix $x_0 \in X$. For each $a \in X$, define a function

$$\phi_a : X \to \mathbb{R}$$

$$\phi_a(x) = d(x, a) - d(x, x_0).$$

Use the triangle inequality to show that $|d(x,a) - d(x,x_0)| \le d(a,x_0)$. Conclude that ϕ_a is bounded.

(c) (3 points) Show that the function

$$\Phi: X \to \mathscr{B}(X, \mathbb{R})$$
$$\Phi(a) = [\phi_a: X \to \mathbb{R}]$$

defines an isometric embedding of X into the complete metric space $\mathscr{B}(X,\mathbb{R})$ with the sup metric ρ . Recall that this means that, for all $a, b \in X$,

$$d(a,b) = \rho(\phi_a,\phi_b).$$