Name: .

Score (Out of ?? points):

- 1. Let (X, d) be a metric space.
 - (a) (2 points) Let $\mathscr{B}(X,\mathbb{R})$ denote the set of bounded functions $f: X \to \mathbb{R}$, where \mathbb{R} has the Euclidean metric. Explain how to combine our results from class to show that $\mathscr{B}(X,\mathbb{R})$ is a complete metric space with respect to the sup metric ρ .

Solution: We proved in class that \mathbb{R} is complete, and therefore that the space of functions \mathbb{R}^X is complete with respect to the uniform metric $\bar{\rho}$. We proved that the subspace $\mathscr{B}(X,\mathbb{R})$ of bounded functions is closed in \mathbb{R}^X , and moreover that a closed subset of a complete metric space is also complete. Finally, we saw that on $\mathscr{B}(X,\mathbb{R})$,

$$\bar{\rho}(f,g) = \min\{\rho(f,g), 1\},\$$

and that it follows that $\mathscr{B}(X,\mathbb{R})$ is complete with respect to the sup metric if and only if it is complete with respect to the uniform metric.

(b) (3 points) Fix $x_0 \in X$. For each $a \in X$, define a function

$$\phi_a : X \to \mathbb{R}$$

$$\phi_a(x) = d(x, a) - d(x, x_0).$$

Use the triangle inequality to show that $|d(x, a) - d(x, x_0)| \le d(a, x_0)$. Conclude that ϕ_a is bounded.

Solution: By the triangle inequality,

$$d(x, a) \le d(x, x_0) - d(x_0, a)$$
 so
 $d(x_0, a) \ge d(x, x_0) - d(x, a).$

It also follows from the triangle inequality that

$$d(x, x_0) \le d(x, a) - d(a, x_0)$$
 so
 $d(x_0, a) \ge d(x, a) - d(x, x_0).$

Combining these results implies $d(x_0, a) \ge |d(x, a) - d(x, x_0)|$, as claimed.

Thus $|\phi_a(x)| \leq d(x_0, a)$ for all $x \in X$. This implies that the image $\phi_a(X)$ is contained in the closed interval $[-d(x_0, a), d(x_0, a)] \subseteq \mathbb{R}$ and hence is bounded.

(c) (3 points) Show that the function

$$\Phi: X \to \mathscr{B}(X, \mathbb{R})$$
$$\Phi(a) = [\phi_a: X \to \mathbb{R}]$$

defines an isometric embedding of X into the complete metric space $\mathscr{B}(X,\mathbb{R})$ with the sup metric ρ . Recall that this means that, for all $a, b \in X$,

$$d(a,b) = \rho(\phi_a, \phi_b).$$

Solution: We proved in part (b) that this function ϕ_a is bounded for each a, which shows that the map Φ is well-defined. It remains to show that it is an isometric embedding.

The sup metric ρ is defined by the equation

$$\rho(\phi_a, \phi_b) = \sup_{x \in X} |\phi_a(x) - \phi_b(x)|$$

= $\sup_{x \in X} |d(x, a) - d(x, x_0) - d(x, b) + d(x, x_0)|$
= $\sup_{x \in X} |d(x, a) - d(x, b)|$

But then replacing x_0 by b in the computation in part (b), we conclude that

$$|d(x,a) - d(x,b)| \le d(a,b),$$

 \mathbf{SO}

$$\rho(\phi_a, \phi_b) = \sup_{x \in X} |d(x, a) - d(x, b)|$$
$$\leq \sup_{x \in X} |d(a, b)|$$
$$= d(a, b).$$

To obtain a lower bound on the superemum, observe that when x = a,

$$|\phi_a(x) - \phi_b(x)| = |d(x, a) - d(x, b)| = |d(a, a) - d(a, b)| = d(a, b).$$

We conclude that $\rho(\phi_a, \phi_b) = d(a, b)$.