Name: \qquad Score (Out of ?? points):

1. Let (X, d) be a metric space.
(a) (2 points) Let $\mathscr{B}(X, \mathbb{R})$ denote the set of bounded functions $f: X \rightarrow \mathbb{R}$, where \mathbb{R} has the Euclidean metric. Explain how to combine our results from class to show that $\mathscr{B}(X, \mathbb{R})$ is a complete metric space with respect to the sup metric ρ.

Solution: We proved in class that \mathbb{R} is complete, and therefore that the space of functions \mathbb{R}^{X} is complete with respect to the uniform metric $\bar{\rho}$. We proved that the subspace $\mathscr{B}(X, \mathbb{R})$ of bounded functions is closed in \mathbb{R}^{X}, and moreover that a closed subset of a complete metric space is also complete. Finally, we saw that on $\mathscr{B}(X, \mathbb{R})$,

$$
\bar{\rho}(f, g)=\min \{\rho(f, g), 1\},
$$

and that it follows that $\mathscr{B}(X, \mathbb{R})$ is complete with respect to the sup metric if and only if it is complete with respect to the uniform metric.
(b) (3 points) Fix $x_{0} \in X$. For each $a \in X$, define a function

$$
\begin{aligned}
\phi_{a}: X & \rightarrow \mathbb{R} \\
\phi_{a}(x) & =d(x, a)-d\left(x, x_{0}\right) .
\end{aligned}
$$

Use the triangle inequality to show that $\left|d(x, a)-d\left(x, x_{0}\right)\right| \leq d\left(a, x_{0}\right)$. Conclude that ϕ_{a} is bounded.

Solution: By the triangle inequality,

$$
\begin{aligned}
d(x, a) & \leq d\left(x, x_{0}\right)-d\left(x_{0}, a\right) \quad \text { so } \\
d\left(x_{0}, a\right) & \geq d\left(x, x_{0}\right)-d(x, a) .
\end{aligned}
$$

It also follows from the triangle inequality that

$$
\begin{aligned}
& d\left(x, x_{0}\right) \leq d(x, a)-d\left(a, x_{0}\right) \quad \text { so } \\
& d\left(x_{0}, a\right) \geq d(x, a)-d\left(x, x_{0}\right) .
\end{aligned}
$$

Combining these results implies $d\left(x_{0}, a\right) \geq\left|d(x, a)-d\left(x, x_{0}\right)\right|$, as claimed.

Thus $\left|\phi_{a}(x)\right| \leq d\left(x_{0}, a\right)$ for all $x \in X$. This implies that the image $\phi_{a}(X)$ is contained in the closed interval $\left[-d\left(x_{0}, a\right), d\left(x_{0}, a\right)\right] \subseteq \mathbb{R}$ and hence is bounded.
(c) (3 points) Show that the function

$$
\begin{aligned}
\Phi: X & \rightarrow \mathscr{B}(X, \mathbb{R}) \\
\Phi(a) & =\left[\phi_{a}: X \rightarrow \mathbb{R}\right]
\end{aligned}
$$

defines an isometric embedding of X into the complete metric space $\mathscr{B}(X, \mathbb{R})$ with the sup metric ρ. Recall that this means that, for all $a, b \in X$,

$$
d(a, b)=\rho\left(\phi_{a}, \phi_{b}\right) .
$$

Solution: We proved in part (b) that this function ϕ_{a} is bounded for each a, which shows that the map Φ is well-defined. It remains to show that it is an isometric embedding.

The sup metric ρ is defined by the equation

$$
\begin{aligned}
\rho\left(\phi_{a}, \phi_{b}\right) & =\sup _{x \in X}\left|\phi_{a}(x)-\phi_{b}(x)\right| \\
& =\sup _{x \in X}\left|d(x, a)-d\left(x, x_{0}\right)-d(x, b)+d\left(x, x_{0}\right)\right| \\
& =\sup _{x \in X}|d(x, a)-d(x, b)|
\end{aligned}
$$

But then replacing x_{0} by b in the computation in part (b), we conclude that

$$
|d(x, a)-d(x, b)| \leq d(a, b),
$$

so

$$
\begin{aligned}
\rho\left(\phi_{a}, \phi_{b}\right) & =\sup _{x \in X}|d(x, a)-d(x, b)| \\
& \leq \sup _{x \in X}|d(a, b)| \\
& =d(a, b) .
\end{aligned}
$$

To obtain a lower bound on the superemum, observe that when $x=a$,

$$
\left|\phi_{a}(x)-\phi_{b}(x)\right|=|d(x, a)-d(x, b)|=|d(a, a)-d(a, b)|=d(a, b) .
$$

We conclude that $\rho\left(\phi_{a}, \phi_{b}\right)=d(a, b)$.

