This worksheet contains a number of review problems to practice for the final. Students are not responsible for knowing any new definitons or results introduced on this handout. Correspondingly, you may not quote these results on the final without proof.

1. Let (X, d) be a metric space, and let A be a set. Let $f: A \rightarrow X$ be an injective function. Prove that the function f allows us to define a metric D on A, given by $D(a, b)=d(f(a), f(b))$.
2. Let X be a metric space, and $A \subseteq X$. Prove that $\bar{A}=\left\{x \in X \mid \inf _{a \in A} d(x, a)=0\right\}$.
3. Let X be a metric space.
(a) Show that the union of a finite number of balls in X is bounded.
(b) Show that the union of a finite number of bounded subsets of X is bounded.
4. Let X be a set and let $p \in X$. Prove that $\mathcal{T}=\{X\} \cup\{U \subseteq X \mid p \notin U\}$ is a topology on X.
5. Show that a topological space X has the discrete topology if and only if its singleton sets $\{x\}$ are open.
6. Let $f: X \rightarrow Y$ be a continuous function of topological spaces. Show that, if $S \subseteq X$ is sequentially compact, then $f(S) \subseteq Y$ is sequentially compact.
7. Let X be a topological space with basis \mathcal{B}, and let S be a subset of X. Prove that the set $\mathcal{B}_{S}=\{S \cap B \mid B \in \mathcal{B}\}$ is a basis for the subspace topology on S.
8. Let (X, d) be a metric space, and $S \subseteq X$ a subset. We now have two ways of defining a topology on S : we can restrict the metric d from X to S, and take the induced topology. Or, we can take the topology induced by d on X, and give S the subspace topology. Verify that these two topologies on S agree, so there is no ambiguity in how it should be topologized.
9. Let (X, \mathcal{T}) be a topological space and let $A \subseteq B \subseteq X$. Prove that the subspace topology on A (as a subset of X) is the same as the subspace topology on A as a subset of B (with the subspace topology \mathcal{T}_{B}).
10. Let X be a topological space with the indiscrete topology.
(a) Describe all closed subsets of X.
(b) Suppose X contains more than one point. Show that X is not metrizable.
(c) Show that X is compact.
(d) Show that X is path-connected and connected.
(e) Show that any sequence in X converges to every point of X. Conclude in particular that X is sequentially compact.
(f) Let $A \subsetneq X$ be a proper subset. Show that the interior of A is \varnothing.
(g) Let $A \subseteq X$ be a nonempty subset. Show that the closure of A is X.
(h) Let $A \subseteq X$ be subset of X. When is it true that every point of X is an accumulation point of A ? When is it true that every point of $X \backslash A$ is an accumulation point of A ?
11. Recall that Sierpiński space \mathbb{S} is the set $\mathbb{S}=\{0,1\}$ with the topology $\{\varnothing,\{0\},\{0,1\}\}$.
(a) Show that \mathbb{S} is not Hausdorff.
(b) Show that every continuous function $\mathbb{S} \rightarrow \mathbb{R}$ (with the standard topology) is constant.
(c) There are 4 possible functions $\mathbb{S} \rightarrow \mathbb{S}$. Determine which of these maps are continuous, and which are not continous. Which are homeomorphisms?
(d) Show that \mathbb{S} is path-connected and connected.
(e) Show that \mathbb{S} and all of its subsets are compact.
(f) Show that every sequence in \mathbb{S} converges to 1 . Under what conditions will a sequence converge to 0 ?
(g) Find all possible bases for \mathbb{S}.
(h) Let (X, \mathcal{T}) be a topological space. Show that $U \subseteq X$ is open if and only if the following map is continuous.

$$
\begin{aligned}
\chi_{U}: X & \longrightarrow \mathbb{S} \\
\chi_{U}(x) & = \begin{cases}0, & x \in U \\
1, & x \notin U .\end{cases}
\end{aligned}
$$

12. Let A, B be subsets of a topological space X. Show that $\operatorname{Int}(A) \cup \operatorname{Int}(B) \subseteq \operatorname{Int}(A \cup B)$, but that equality may not hold in general.
13. Consider the following topologies on \mathbb{R}.

- The topology induced by the Euclidean metric
- $\mathcal{T}=\{\mathbb{R}, \varnothing\}$
- $\mathcal{T}=\{(-\infty, a) \mid a \in \mathbb{R}\} \cup\{\varnothing\} \cup\{\mathbb{R}\}$
- $\mathcal{T}=\{\mathbb{R},(0,1), \varnothing\}$
- $\mathcal{T}=\{(a, \infty) \mid a \in \mathbb{R}\} \cup\{\varnothing\} \cup\{\mathbb{R}\}$
- $\mathcal{T}=\{\mathbb{R},\{0,1\},\{0\},\{1\}, \varnothing\}$
- $\mathcal{T}=\{A \mid A \subseteq \mathbb{R}, 0 \in A\} \cup\{\varnothing\}$
- $\mathcal{T}=\{A \mid A \subseteq \mathbb{R}\}$
- $\mathcal{T}=\{A \mid A \subseteq \mathbb{R}, 0 \notin A\} \cup\{\mathbb{R}\}$
- $\mathcal{T}=\{A \mid A \subseteq \mathbb{R}, \mathbb{R} \backslash A$ is finite $\} \cup\{\varnothing\}$
- $\mathcal{T}=\{A \mid A \subseteq \mathbb{R}, 1 \in A\} \cup\{\varnothing\}$
- $\mathcal{T}=\{A \mid A$ is a union of intervals of the form $[a, b)$ for $a, b \in \mathbb{R}\} \cup\{\varnothing\}$
(a) For each topology, think about what convergence means for a sequence of real numbers. Write down some sequences and determine which (if any) real numbers they converge to.
(b) Write down some subsets of \mathbb{R}. For each topology, determine each subset's interior, closure, boundary, and accumulation points.
(c) Write down some subsets of \mathbb{R}. For each topology, determine whether the subset is T_{1}, Hausdorff, compact, connected, or path-connected.

14. Let $f: X \rightarrow Y$ be a function of topological spaces. Suppose that X can be written as a union of open subsets $X=\bigcup_{i \in I} U_{i}$. Suppose moreover that for each $i \in I$, the restriction $\left.f\right|_{U_{i}}: U_{i} \rightarrow Y$ of f to U_{i} is continuous with respect to the subspace topology on U_{i}. Show that f is continuous.
15. Let $f, g: X \rightarrow \mathbb{R}$ be continuous functions.
(a) Show that the set $\{x \in X \mid f(x) \leq g(x)\}$ is closed.
(b) Show that the "minimum" function $m(x)$ is continuous:

$$
\begin{aligned}
m: X & \rightarrow \mathbb{R} \\
m(x) & =\min \{f(x), g(x)\}
\end{aligned}
$$

16. Let X be a topological space with basis \mathcal{B}.
(a) Let $U \subseteq X$. Show that U is open if and only if, for each $u \in U$, there is some $B \in \mathcal{B}$ with $u \in B \subseteq U$.
(b) Let $A \subseteq X$. Show that $a \in \operatorname{Int}(A)$ if and only if there is some $B \in \mathcal{B}$ with $a \in B \subseteq A$.
17. (a) Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be topological spaces, and let $f: X \rightarrow Y$ be a function. Recall that the graph of f is defined to be the subset of $X \times Y$

$$
\{(x, f(x)) \in X \times Y \mid x \in X\}
$$

Suppose that Y is Hausdorff. Show that, if f is continuous, then the graph of f is a closed subset of $X \times Y$ with respect to the product topology $\mathcal{T}_{X \times Y}$.
(b) Find a counterexample when Y is not Hausdorff.
18. Let $A \subseteq X$ and $B \subseteq Y$ be subsets of topological spaces X and Y respectively. Show that $\bar{A} \times \bar{B}=\overline{A \times B}$ as subsets of $X \times Y$ with the product topology.
19. Let X and Y be Hausdorff topological spaces. Prove that the product $X \times Y$ (with the product topology) is Hausdorff.
20. Let X, Y, Z be topological spaces, and endow $X \times Y$ with the product topology. Let f be a function $f: Z \rightarrow X \times Y$, so f has the form

$$
\begin{aligned}
f: Z & \rightarrow X \times Y \\
f(z) & =\left(f_{X}(z), f_{Y}(z)\right)
\end{aligned}
$$

for coordinate functions $f_{X}: Z \rightarrow X$ and $f_{Y}: Z \rightarrow Y$. Show that f is continuous if and only if its coordinate functions f_{X} and f_{Y} are continuous.
21. Definition (Continuity in each variable). Let X, Y, Z be topological spaces, and $X \times Y$ the topological space with the product topology. Let $F: X \times Y \rightarrow Z$ be a function. Then F is continuous in each variable separately if for each $y_{0} \in Y$, and for each $x_{0} \in X$, the following maps are continuous.

$$
\begin{array}{rlrl}
X & \longrightarrow Z & Y & \longrightarrow Z \\
x & \longmapsto F\left(x, y_{0}\right) & y & \longmapsto F\left(x_{0}, y\right) .
\end{array}
$$

(a) Show that, if F is continuous, then it is continuous in each variable.
(b) Show that the converse is false. Hint: Consider the function $F: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
F(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

and use the following result from real analysis.

Lemma. Let $F: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be a function, and fix a point $\left(x_{0}, y_{0}\right)$ in $\mathbb{R} \times \mathbb{R}$. If F is continuous at $\left(x_{0}, y_{0}\right)$, then for any parameterized line

$$
x(t)=x_{0}+a t, \quad y(t)=y_{0}+b t \quad(a, b \in \mathbb{R} \text { any constants }),
$$

the limit $\lim _{t \rightarrow 0} F(x(t), y(t))$ exists and equals $F\left(x_{0}, y_{0}\right)$.
22. Let X be a topological space.
(a) Suppose that X is Hausdorff. Let $x \in X$. Show that the intersection of all open sets containing x is equal to $\{x\}$.
(b) Show that the converse statement does not hold. Hint: Consider (\mathbb{R}, cofinite).
23. Let X be a topological space, and let $A, B \subseteq X$. Then A and B form a separation of X if and only if they are disjoint nonempty sets such that $A \cup B=X$ and $\bar{A} \cap B=A \cap \bar{B}=\varnothing$.
24. Let X be a topological space, and let $\left\{C_{i}\right\}_{i \in I}$ be a (nonempty) collection of connected subsets of X. Suppose that, for some fixed $j \in I$, the intersection $C_{i} \cap C_{j} \neq \varnothing$ for all $i \in I$. Prove that $\bigcup_{i \in I} C_{i}$ is connected.
25. Let X be a topological space.
(a) Suppose that $X=U \cup V$ is a separation of X. Prove or disprove: U and V is a union of connected components of X.
(b) Suppose that $X=U \cup V$ is a decomposition of X into two nonempty disjoint subsets, each of which is a union of conneccted components of X. Prove or disprove: U and V are a separation of X.
26. Definition (Totally disconnected space). A topological space X is called totally disconnected if its connected components are all singletons $\{x\}$.
(a) Let X be a topological space with the discrete topology. Show that X is totally disconnected.
(b) Find an example of a topological space X that is totally disconnected, but not discrete.
27. Determine whether the set $\mathbb{R}^{2} \backslash \mathbb{Q}^{2}$ is connected or path-connected.
28. Let $\left(X, \mathcal{T}_{X}\right)$ be a compact topological space, and let $\left(Y, \mathcal{T}_{Y}\right)$ be a Hausdorff topological space. Let $f: X \rightarrow Y$ be a continuous map. Show that f is a closed map, that is, $f(C) \subseteq Y$ is closed whenever $C \subseteq X$ is closed.
29. Definition (Dense subsets; nowhere dense subsets). Let (X, \mathcal{T}) be a topological space. A subset $A \subseteq X$ is called dense if $\bar{A}=X$. The subset A is called nowhere dense if the interior of \bar{A} is empty.
(a) Give an example of a subset of \mathbb{R} that is dense, and a subset of \mathbb{R} that is nowhere dense. Give an example of a set that is neither. Can a set be both dense and nowhere dense?
(b) Let A be a dense subset of a space X. Show that any open subset $U \subseteq X$ satisfies $\overline{U \cap A}=\bar{U}$.
(c) Show that a subset $A \subseteq X$ of a space X is nowhere dense if and only if $X \backslash \bar{A}$ is a dense open subset of X.
(d) Let $f: X \rightarrow Y$ be a contitnuous function of topological spaces, and let $A \subseteq X$ be a dense subset. Suppose that Y is Hausdorff. Explain why a continuous map $f: X \rightarrow Y$ is completely determined by its values on A.
30. (a) Let X be a topological space, and $A \subseteq X$. Show that, if A has no accumulation points, then A is closed.
(b) Prove the following.

Theorem. Let X be a topological space. If X is compact, then every infinite subset S of X has an accumulation point.
Hint: First show that $\{(X \backslash S) \cup\{s\}\}_{s \in S}$ is an open cover of X.
31. Let $K=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$. Let \mathbb{R}_{K} denote the set \mathbb{R} with the topology defined by the basis

$$
\mathcal{B}=\{(a, b) \mid a, b \in \mathbb{R}\} \cup\{(a, b) \backslash((a, b) \cap K) \mid a, b \in \mathbb{R}\}
$$

called the K-topology. The space \mathbb{R}_{K} is a useful source of counterexamples in point-set topology.
(a) Verify that \mathcal{B} really is a basis, so it generates a well-defined topology.
(b) Explain why any set that is open in the standard topology on \mathbb{R} is also open in \mathbb{R}_{K}. This is the statement that the topology on \mathbb{R}_{K} is finer than the topology on \mathbb{R}.
(c) Show that \mathbb{R}_{K} is Hausdorff (and therefore also T_{1}).
(d) Show that the set K is closed in \mathbb{R}_{K}.
(e) What are the limits of the sequence $\left(\frac{1}{n}\right)_{n \in \mathbb{N}}$ in \mathbb{R}_{K} ?
(f) What are the accumulation points of the set $K \subseteq \mathbb{R}_{K}$?
(g) Prove that $[0,1] \subseteq \mathbb{R}_{K}$ is not compact. Hint: Problem 30.

