Warm-up questions

(These warm-up questions are optional, and won't be graded.)

- 1. Let (X, \mathcal{T}) be a topological space. Show that any subset $A = \{x\} \subseteq X$ of a single element is connected.
- 2. Let $X = \{a, b, c, d\}$ with the topology

$$\mathcal{T} = \{ \varnothing, \{a\}, \{a, b\}, \{c\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\} \}.$$

Is X connected?

- 3. (a) Show that, for $a, b \in \mathbb{R}$, the subsets \emptyset , $\{a\}$, (a, b), (a, b], [a, b), [a, b], (a, ∞) , $[a, \infty)$, (∞, b) , $(\infty, b]$, and \mathbb{R} of \mathbb{R} are all intervals in the sense of Problem b.
 - (b) Show that every interval must have one of these forms.
- 4. Give an example of a subset A of \mathbb{R} (with the standard topology) such that A is not connected, but \overline{A} is connected. (Compare to Assignment Problem 1)

Worksheet problems

(Hand these questions in!)

• Worksheet #15 Problems 3, 5, 6(b).

Assignment questions

(Hand these questions in!)

- 1. Let (X, \mathcal{T}_X) be a topological space, and let $A \subseteq X$ be a connected subset. Let B be any subset such that $A \subseteq B \subseteq \overline{A}$. Prove that B is connected. *Remark:* This shows in particular that if A is connected, then so is \overline{A} .
- 2. (a) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Let $f : X \to Y$ be a continuous map. Prove that if X is connected, then f(X) is connected. In other words, the continuous image of a connected space is connected.
 - (b) Recall the Intermediate Value Theorem from real analysis (which you may use without proof).

Intermediate Value Theorem. If $f : [a, b] \to \mathbb{R}$ is continuous and d lies between f(a) and f(b) (i.e. either $f(a) \leq d \leq f(b)$ or $f(b) \leq d \leq f(a)$), then there exists $c \in [a, b]$ such that f(c) = d.

Define a subset $A \subseteq \mathbb{R}$ to be an *interval* if whenever $x, y \in A$ and z lies between x and y, then $z \in A$.

Prove that any interval of \mathbb{R} is connected. *Hint:* Worksheet #15 Problem 4.

(c) Prove that any subset of \mathbb{R} that is not an interval is disconnected.

These last two results together prove:

Theorem (Connected subsets of \mathbb{R}). A subset of \mathbb{R} is a connected if and only if it is an interval.

3. (a) Prove the following result.

Theorem (Generalized Intermediate Value Theorem). Let (X, \mathcal{T}_X) be a connected topological space, and let $f : X \to \mathbb{R}$ be a continuous function (where the topology on \mathbb{R} is induced by the Euclidean metric). If $x, y \in X$ and c lies between f(x) and f(y), then there exists $z \in X$ such that f(z) = c.

(b) Prove that any continuous function $f : [0,1] \to [0,1]$ has a fixed point. (In other words, show that there is some $x \in [0,1]$ so that f(x) = x). *Hint:* Consider the function

$$g: [0,1] \to \mathbb{R}$$
$$g(x) = f(x) - x.$$

- 4. **Definition (Connected components of a topological space).** Let (X, \mathcal{T}_X) be a topological space. A subset $C \subseteq X$ is called a *connected component* of X if
 - (i) C is connected;
 - (ii) if C is contained in a connected subset A, then C = A.

In other words, the connected components are the 'maximal' connected subsets of X.

- (a) Show that any connected component of X is closed. (*Hint*: Problem 1).
- (b) Let $x \in X$. Show that the set

$$\bigcup_{\substack{A \text{ is a connected set,} \\ x \in A}} A$$

is a connected component of X.

- (c) Show that X is the **disjoint union** of its connected components. In other words, show that every point of X is contained in one, and only one, connected component.
- (d) Determine the connected components of Q (with the Euclidean metric). (Remember to rigorously justify your answer!)
- (e) Deduce from the example of \mathbb{Q} that connected components need not be open.
- (f) Suppose that X has the property that every point has a connected neighbourhood. Show that the connected components of X are open.