Warm-up questions

(These warm-up questions are optional, and won't be graded.)

1. Consider the sequence of real numbers $1,2,3,4,5, \ldots$. Which of the following are subsequences?
(a) $1,1,2,2,3,3,4,4,5,5, \ldots$
(c) $2,4,6,8,10,12, \ldots$
(b) $1,1,1,1,1,1,1, \ldots$
(d) $1,3,2,4,5,7,6,8,9,11, \ldots$
2. Let (X, d) be a metric space, and let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of points in X. Recall that we proved that, if $\lim _{n \rightarrow \infty} a_{n}=a_{\infty}$, then any subsequence of $\left(a_{n}\right)_{n \in \mathbb{N}}$ also converges to a_{∞}.
(a) Suppose that $\left(a_{n}\right)_{n \in \mathbb{N}}$ has a subsequence that does not converge. Prove that $\left(a_{n}\right)_{n \in \mathbb{N}}$ does not converge.
(b) Suppose that $\left(a_{n}\right)_{n \in \mathbb{N}}$ has a subsequence converging to $a \in X$, and a different subsequence converging to $b \in X$, with $a \neq b$. Prove that $\left(a_{n}\right)_{n \in \mathbb{N}}$ does not converge.
3. Let (X, d) be a metric space, and let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of points in X. Show that, if $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is a finite set, then $\left(a_{n}\right)_{n \in \mathbb{N}}$ must have a subsequence that is constant (and, in particular, convergent).
4. Let (X, d) be a metric space, and let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of points in X. Suppose that the set $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is unbounded. Explain why $\left(a_{n}\right)_{n \in \mathbb{N}}$ cannot converge.
5. Find examples of sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ of real numbers with the following properties.
(a) $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is unbounded, but $\left(a_{n}\right)_{n \in \mathbb{N}}$ has a convergent subsequence
(b) $\left(a_{n}\right)_{n \in \mathbb{N}}$ has no convergent subsequences
(c) $\left(a_{n}\right)_{n \in \mathbb{N}}$ is not an increasing sequence, but it has an increasing subsequence
(d) $\left(a_{n}\right)_{n \in \mathbb{N}}$ has four subsequences that each converge to a distinct limit point
6. Write down a bounded sequence in \mathbb{R}. Can you identify a convergent subsequence?
7. Determine which of the following subsets of of \mathbb{R}^{2} can be expressed as the Cartesian product of two subsets of \mathbb{R}.
(a) $\{(x, y) \mid x \in \mathbb{Q}\}$
(c) $\{(x, y) \mid x>y\}$
(e) $\left\{(x, y) \mid x^{2}+y^{2}<1\right\}$ (g) $\{(x, y) \mid x=3\}$
(b) $\{(x, y) \mid x, y \in \mathbb{Q}\}$
(d) $\{(x, y) \mid 0<y \leq 1\}$
(f) $\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$ (h) $\{(x, y) \mid x+y=3\}$
8. (a) For which values of r is the square $(-r, r) \times(-r, r) \subseteq \mathbb{R}^{2}$ contained in the unit ball $\left\{(x, y) \mid x^{2}+y^{2}<1\right\} ?$
(b) For which values of r is the r-ball $\left\{(x, y) \mid x^{2}+y^{2}<r^{2}\right\}$ contained in the square $(-1,1) \times$ $(-1,1) \subseteq \mathbb{R}^{2}$?

Worksheet problems

(Hand these questions in!)

- Worksheet \#6, Problem 2

Assignment questions

(Hand these questions in!)

1. For sets X and Y, let $A, B \subseteq X$ and $C, D \subseteq Y$. Consider the Cartesian product $X \times Y$. For each of the following, determine whether you can replace the symbol \square with \subseteq, \supseteq, $=$, or none of the above. Justify your answer by giving a proof of any set-containment or set-equality you claim. If set-equality does not hold in general, give a counterexample.
(a) $(A \times C) \cup(B \times D) \quad \square \quad(A \cup B) \times(C \cup D)$
(b) $(A \times C) \cap(B \times D) \quad \square \quad(A \cap B) \times(C \cap D)$
(c) $(X \backslash A) \times(Y \backslash C) \quad \square(X \times Y) \backslash(A \times C)$
2. Consider the real numbers \mathbb{R} with the Euclidean metric. Determine the interior, closure, and boundary of the subset $\mathbb{Q} \subseteq \mathbb{R}$. Remember to rigorously justify your solution!
3. Let (X, d) be a metric space, and $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a Cauchy sequence in X. Show that $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is a bounded subset of X.
4. Recall the following result from real analysis (which you do not need to prove):

Theorem (Bolzano-Weierstrass). Let $A \subseteq \mathbb{R}^{n}$ be a bounded infinite set. Then A has an accumulation point $x \in \mathbb{R}^{n}$.

Prove the following result (which is sometimes also called the Bolzano-Weierstrass theorem):
Theorem (Sequential compactness in \mathbb{R}^{n}). Consider the space \mathbb{R}^{n} with the Euclidean metric. Let $S \subseteq \mathbb{R}^{n}$ be a subset. Then S is sequentially compact if and only if S is closed and bounded.
5. (a) Definition (Open cover). A collection $\left\{U_{i}\right\}_{i \in I}$ of open subsets of a metric space X is an open cover of X if $X=\bigcup_{i \in I} U_{i}$. In other words, every point in X lies in some set U_{i}.
Suppose that (X, d) is a sequentially compact metric space. Let $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ be an open cover of X. Prove that (associated to the open cover \mathcal{U}) there exists a real number $\delta>0$ with the following property: for every $x \in X$, there is some associated index $i_{x} \in I$ such that $B_{\delta}(x) \subseteq U_{i_{x}}$.
(b) Definition (ϵ-nets of a metric space). Let (X, d) be a metric space. A subset $A \subseteq X$ is called an ϵ-net if $\left\{B_{\epsilon}(a) \mid a \in A\right\}$ is an open cover of X.
Suppose that (X, d) is a sequentially compact metric space, and $\epsilon>0$. Prove that X has a finite ϵ-net.
(c) Let (X, d) be a sequentially compact metric space, and let $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ be an open cover of X. Show that there exists some finite collection $U_{i_{1}}, \ldots, U_{i_{n}} \in \mathcal{U}$ so that $\left\{U_{i_{1}}, \ldots, U_{i_{n}}\right\}$ covers X, i.e., so that $X=U_{i_{1}} \cup \cdots \cup U_{i_{n}}$.
We will return to these results later in the course when we study compactness.

