
Math 490 Homework #9 Thursday 14 November 2019

Warm-up questions

(These warm-up questions are optional, and won’t be graded.)

1. Let X be a topological space with the cofinite topology, and let S ⊆ X. Show that the subspace
topology on S is the cofinite topology.

2. Let X be a set, and A ⊆ X a proper subset. What are the interior and closure (Assignment
Problems 1 and 2) of A if X is given

(a) the discrete topology? (b) the indiscrete topology?

3. Let X = {a, b, c, d}. Let T be the topology on X

T = {∅, {b}, {c}, {a, b}, {b, c}, {a, b, c}, {b, c, d}, X}.

Find the interior, closures, boundaries, and accumulation points of of the subsets

(a) {a, b, c} (b) {a, c, d} (c) {a, b, d} (d) {b} (e) {d} (f) {b, d}

4. Consider the following subsets of R
• R
• ∅
• {0, 1}

• [0,∞)

• (1, 2)

• [1, 2] ∪ [3,∞)

• (−∞, 0)

• (−∞, 0]

• N

• {−n | n ∈ N}

Find the interior, closures, boundaries, and accumulation points of these subsets . . .

(a) . . . when R has the discrete topology.

(b) . . . when R has the indiscrete topology.

(c) . . . when R has the Euclidean topology.

(d) . . . when R has the topology T = {(a,∞) | a ∈ R} ∪ {∅} ∪ {R}.
(e) . . . when R has the cofinite topology.

(f) . . . when R has the topology T = {∅} ∪ {U ⊆ R | 0 ∈ U}. .

(g) . . . when R has the topology T = {R} ∪ {U ⊆ R | 0 /∈ U}.

Worksheet problems

(Hand these questions in!)

• Worksheet #10 Problems 1, 4.
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Assignment questions

(Hand these questions in!)

In this assignment, we will generalize the notions of interior, closure, boundary, and accumulation
point to general topological spaces—and verify that many of the results we proved for metric spaces
hold in general. This is an opportunity to revisit their proofs!

1. Definition (Interior of a set in a topological space). Let (X, T ) be a topological
space, and let A ⊆ X. A point a ∈ A is an interior point of A if there exists an open
subset U ⊆ X such that a ∈ U ⊆ A. Define the interior of A to be the set of interior
points of A. Concretely,

Int(A) = { a ∈ A | there is some open neighbourhood U of a such that U ⊆ A }.

Observe that, by definition, Int(A) ⊆ A. Prove the following.

(a) A is open if and only if A = Int(A).

(b) Int(A) is an open set.

(c) Int(Int(A)) = Int(A).

(d) Suppose that A ⊆ X is any subset, and U ⊆ A is an open subset of X. Prove that
U ⊆ Int(A).

(e) Int(A) =
⋃
U⊆A,

U open in X

U.

2. Definition (Closure of a set in a topological space). Let (X, T ) be a topological
space, and let A ⊆ X. Define the closure of A to be the set

A = { x ∈ X | any neighbourhood U of x contains a point of A }.

Prove the following.

(a) A ⊆ A.

(b) A is closed if and only if A = A.

(c) A = A.

(d) A is a closed set.

(e) Suppose that A ⊆ X is any subset, and C is a closed set containing A. Then A ⊆ C.

(f) A =
⋂

C closed in X,
A⊆C

C.

(g) Definition (Accumulation points of a set). Let (X, d) be a metric space,
and let S ⊆ X be a set. A point x ∈ X is called an accumulation point of S if
every open neighbourhood U of x also contains a point in S distinct from x.

By Homework #2 Problem 4(b), when the topology on X is induced by a metric, this
agrees with our metric space definition of an accumulation point.
Let A′ be the set of accumulation points of A. Then A = A ∪A′.
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3. Definition (Boundary of a set A). Let (X, T ) be a topological space, and let
A ⊆ X. Then the boundary of A, denoted ∂A, is the set A \ Int(A).

(a) Prove that ∂A = A ∩ (X \A).

(b) Use this result to conclude that (i) ∂A is closed, and (ii) ∂A = ∂(X \A).

(c) Prove the following.

Theorem (An equivalent definition of ∂A). Let X be a topological space,
and let A ⊆ X. Then

∂A =

{
x ∈ X

∣∣∣∣ every open neighbourhood U of x contains at least one point of A,
and at least one point of X \A

}
(d) Prove that every point of X falls into one of the following three categories of points, and

that the three categories are mutually exclusive:

(i) interior points of A; (ii) interior points of X \A;

(iii) points in the (common) boundary of A and X \A.

4. Definition (Topological equivalence). Let X be a set. Let d1 and d2 be two
metrics on X. Then the metric spacess (X, d1) and (X, d2) are called topologically
equivalent if the metrics induce the same topology on X.

(a) Let X be a nonempty finite set. Show that all metrics on X are topologically equivalent.
Hint: Homework #8 Problem 2.

(b) Consider the natural numbers N. Show that (N, Euclidean) and (N, discrete) are topo-
logically equivalent. Conclude that a bounded metric space strucure can be topologically
equivalent to an unbounded metric space structure.

(c) Prove the following theorem.

Theorem (A criterion for topological equivalence). Let X be a set and let
d1 and d2 be two metrics on X. For each metric di, write Bdi

r (x) to denote the
ball of radius r centred on x defined with respect to the metric di. Show that d1
and d2 are topologically equivalent if and only if the following condition holds:
For every ε > 0, there exists r1, r2 > 0 such that

Bd1
r1 (x) ⊆ Bd2

ε (x) and Bd2
r2 (x) ⊆ Bd1

ε (x).

(d) Let (X, d) be a topological space. Show that the following metric d on X is topologically
equivalent to d. (You do not need to verify that it is a metric).

d(x, y) =

{
d(x, y), if d(x, y) < 1,
1, if d(x, y) ≥ 1.

This result shows that every metric is topologically equivalent to a bounded metric. In
particular, whenever a topological space is metrizable, we can always choose the corre-
sponding metric to be bounded.

(e) Let X be a set. Show that two metric space structures (X, d1) and (X, d2) on X are
topologically equivalent if and only if the map

I : (X, d1) −→ (X, d2)

x 7−→ x

is a homeomorphism. Hint: Homework #4 Problem 2(b).
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