Final Exam

Math 490 16 December 2021 Sarah Koch & Jenny Wilson

Name.			
rrame.			

Instructions: This exam has 10 questions for a total of 40 points.

Each student may bring in one double-sided $(8\frac{1}{2}^{"} \times 11")$ sheet of notes, which they must have either hand-written or typed (in font size at least 12) themselves.

The exam is closed-book. No books, additional notes, cell phones, calculators, or other devices are permitted. Scratch paper is available.

Fully justify your answers unless otherwise instructed. You may cite any (non-optional) results proved on the worksheets, on a quiz, or on the homeworks without proof. Please include a complete statement of the result you are quoting.

You have 120 minutes to complete the exam. If you finish early, consider checking your work for accuracy.

Question	Points	Score
1	8	
2	1	
3	4	
4	4	
5	4	
6	6	
7	2	
8	1	
9	6	
10	4	
Total:	40	

1. (8 points) For each of the following statements: if the statement is always true, write "True". Otherwise, state a counterexample. No further justification needed.

Note: If the statement is not always true, you can receive partial credit for writing "False" without a counterexample.

- (a) Let X be a metric space, $x, y \in X$, and r > 0. If d(x, y) > 2r, then the balls $B_r(x)$ and $B_r(y)$ are disjoint.
- (b) Let X and Y be metric spaces. If $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ are Cauchy sequences in X and Y, respectively, then $((x_n, y_n))_{n\in\mathbb{N}}$ is Cauchy with respect to the product metric on $X \times Y$.
- (c) Let X and Y be topological spaces, and \mathcal{B} a basis for the topology on X. Then a function $f: X \to Y$ is open if and only if f(B) is open for every $B \in \mathcal{B}$.
- (d) Let A, B be **disjoint** subsets of a topological space X. Then $\partial(A \cup B) = \partial A \cup \partial B$.
- (e) Let X be a topological space with the property that every sequence converges (to at least one point). Then X must have the indiscrete topology.
- (f) Let X and Y be T_1 -spaces. Then the product topology on $X \times Y$ has the T_1 property.

- (g) Let $f: X \to Y$ be a continuous function of topological spaces. If X is metrizable, then f(X) is metrizable.
- (h) Let X be a complete metric space. Then any closed and bounded subset S of X is compact.
- 2. (1 point) Let $X = \{a, b, c, d\}$ with the topology $\mathcal{T} = \{\emptyset, \{c\}, \{c, b\}, \{a, c\}, \{a, b, c\}, \{a, b, c, d\}\}$. Write the subspace topology on the subspace $S = \{a, b, d\}$. No justification needed.

3. (4 points) Consider the following statement.

Let $f: X \to Y$ be a continuous function of topological spaces.

If the space $f(X) \subseteq Y$ (with the subspace topology) is _____, then so is X.

Circle all properties that truthfully fill in the blank. No justification needed.

 T_1 Hausdorff connected disconnected

indiscrete discrete compact noncompact

(By "X is discrete" we mean "X has the discrete topology". Similarly for indiscrete.)

- 4. (4 points) Consider the following topological spaces X and their subsets S. In each case, compute the interior Int(S), the closure \overline{S} , the boundary ∂S , and the set S' of accumulation points of S. No justification necessary.
 - (a) Let $X = \{a, b, c, d\}$ with the topology $\{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, \{a, d\}, \{a, b, c, d\}\}$. Let $S = \{a, b\}$.

 $\operatorname{Int}(S)$: _______ \overline{S} : _______ ∂S : _______ S': _______

(b) Let $X = \mathbb{R}$ with the topology $\mathcal{T} = \{U \mid 0 \notin U\} \cup \{\mathbb{R}\}$. Let $S = \{0, 1\}$.

 $\operatorname{Int}(S)$: ______ \overline{S} : ______ ∂S : ______ S': ______

- 5. (4 points) For each of the following sequences: state the set of all limits, or, if the sequence has no limits, write "Does not converge". No justification necessary.
 - (a) Let \mathbb{R} have the topology $\{A \mid 0 \in A\} \cup \{\emptyset\}$.
 - (i) $0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, \cdots$
 - (ii) $0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \cdots$
 - (b) Let \mathbb{R} have the topology $\{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\mathbb{R}\} \cup \{\emptyset\}$
 - $(i) \ 0, \ 1, \ 0, \ 1, \ 0, \ 1, \ 0, \ 1, \ 0, \ 1, \ 0, \ 1, \ \cdots$
 - (ii) $0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \cdots$

6. (6 points) Circle all terms that apply. No justification necessary.

(a) The subspace $\mathbb{Q} \subseteq \mathbb{R}$ with the standard topology is . . .

compact connected

 T_1

 T_2 (Hausdorff)

(b) The topology $\mathcal{T} = \{U \mid 0 \in U\} \cup \{\emptyset\} \text{ on } \mathbb{R} \text{ is } \dots$

compact

connected

 T_1

 T_2 (Hausdorff)

(c) The set $X = \{a, b, c\}$ with the topology $\{\emptyset, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ is ...

compact

connected

 T_1

 T_2 (Hausdorff)

7. (2 points) For each of the following maps f, circle all properties that apply.

(a) $f: (\mathbb{R}, \text{ cofinite}) \to (\mathbb{R}, \text{ cofinite})$ f(x) = |x|

continuous open

Let $\mathcal{T} = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\mathbb{R}\} \cup \{\emptyset\}.$ (b) $f: (\mathbb{R}, \mathcal{T}) \to (\mathbb{R}, \mathcal{T})$

f(x) = |x|

continuous

open

8. (1 point) Let $X = \{a, b, c, d\}$ with the topology $\{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}\}$. Write down a path in X from a to b. No justification necessary.

9. (a) (3 points) Let X and Y be path-connected topological spaces. Show that the product $X \times Y$ (with the product topology) is path-connected.

(b) (3 points) Let X be a topological space, and let a and b be points in two distinct connected components of X. Show that there is no path from a to b.

10. (4 points) Suppose that X is a compact, Hausdorff topological space. Show that X satisfies the following property: For every point $x \in X$ and closed subset $C \subseteq X$ that does not contain x, there exist disjoint open subsets V and U of X such that $x \in V$ and $C \subseteq U$.

Blank page for extra work.

Page 7 of 7 End of exam.