Name: _____ Score (Out of 5 points):

1. (5 points) Let (X, d_X) and (Y, d_Y) be two metric spaces. Let $X \times Y$ be the Cartesian product of the sets X and Y, i.e., $X \times Y$ is the set

$$X \times Y = \{(x, y) \mid x \in X, y \in Y\}.$$

Prove that the following function defines a metric on $X \times Y$.

$$d: (X \times Y) \times (X \times Y) \longrightarrow \mathbb{R}$$

 $d((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2)$

Solutions. From the description of d we see that it is well-defined: its outputs are (uniquely) defined for every element of $(X \times Y) \times (X \times Y)$, and its outputs are always elements of \mathbb{R} . We do not need to do any additional work to verify well-definedness of d.

To show that d is a metric, we will check the 3 conditions that define a metric:

- (M1) (Positivity). $d((x_1, y_1), (x_2, y_2)) \ge 0$ for all $(x_1, y_1), (x_2, y_2) \in X \times Y$, and $d((x_1, y_1), (x_2, y_2)) = 0$ if and only if $(x_1, y_1) = (x_2, y_2)$.
- (M2) (Symmetry). $d((x_1, y_1), (x_2, y_2)) = d((x_2, y_2), (x_1, y_1))$ for all $(x_1, y_1), (x_2, y_2) \in X \times Y$.
- (M3) (Triangle inequality). $d((x_1, y_1), (x_2, y_2)) + d((x_2, y_2), (x_3, y_3)) \ge d((x_1, y_1), (x_3, y_3))$ for all $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in X \times Y$.

We will use the assumption that d_X, d_Y are metrics. We first check (M1). Let $x_1, x_2 \in X$ and $y_1, y_2 \in Y$ be any points.

$$d((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2)$$

$$\geq 0 + 0 \qquad \text{[since } d_X, d_Y \text{ satisfy (M1)]}$$

$$= 0$$

$$d((x_1, y_1), (x_2, y_2)) = 0$$

$$\iff d_X(x_1, x_2) + d_Y(y_1, y_2) = 0$$

$$\iff d_X(x_1, x_2) = 0 \text{ and } d_Y(y_1, y_2) = 0$$
 [since both terms are nonnegative]
$$\iff x_1 = x_2 \text{ and } y_1 = y_2$$
 [since d_X, d_Y satisfy (M1)]
$$\iff (x_1, y_1) = (x_2, y_2)$$

We next check (M2). Let $x_1, x_2 \in X$ and $y_1, y_2 \in Y$ be any points.

$$d((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2)$$

$$= d_X(x_2, x_1) + d_Y(y_2, y_1)$$
 [since d_X, d_Y satisfy (M2)]
$$= d((x_2, y_2), (x_1, y_1))$$

Finally, we check (M3). Let $x_1, x_2, x_3 \in X$ and $y_1, y_2, y_3 \in Y$ be any points.

$$d((x_1, y_1), (x_2, y_2)) + d((x_2, y_2), (x_3, y_3)))$$

$$= d_X(x_1, x_2) + d_Y(y_1, y_2) + d_X(x_2, x_3) + d_Y(y_2, y_3)$$

$$= \left(d_X(x_1, x_2) + d_X(x_2, x_3)\right) + \left(d_Y(y_1, y_2) + d_Y(y_2, y_3)\right)$$

$$\geq d_X(x_1, x_3) + d_Y(y_1, y_3) \qquad [\text{since } d_X, d_Y \text{ satisfy (M3)}]$$

$$= d((x_1, y_1), (x_3, y_3))$$