Name: \qquad Score (Out of 5 points):

1. (5 points) Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be two metric spaces. Let $X \times Y$ be the Cartesian product of the sets X and Y, i.e., $X \times Y$ is the set

$$
X \times Y=\{(x, y) \mid x \in X, y \in Y\} .
$$

Prove that the following function defines a metric on $X \times Y$.

$$
\begin{aligned}
d:(X \times Y) \times(X \times Y) & \longrightarrow \mathbb{R} \\
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & =d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right)
\end{aligned}
$$

Solutions. From the description of d we see that it is well-defined: its outputs are (uniquely) defined for every element of $(X \times Y) \times(X \times Y)$, and its outputs are always elements of \mathbb{R}. We do not need to do any additional work to verify well-definedness of d.

To show that d is a metric, we will check the 3 conditions that define a metric:
(M1) (Positivity). $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \geq 0$ for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$, and $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=0$ if and only if $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$.
(M2) (Symmetry). $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d\left(\left(x_{2}, y_{2}\right),\left(x_{1}, y_{1}\right)\right)$ for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$.
(M3) (Triangle inequality). $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)+d\left(\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right) \geq d\left(\left(x_{1}, y_{1}\right),\left(x_{3}, y_{3}\right)\right)$ for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in X \times Y$.

We will use the assumption that d_{X}, d_{Y} are metrics. We first check (M1). Let $x_{1}, x_{2} \in X$ and $y_{1}, y_{2} \in Y$ be any points.

$$
\begin{aligned}
& d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right) \\
& \geq 0+0 \\
&=0 \\
& d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=0 \\
& \Longleftrightarrow d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right)=0 \\
& \Longleftrightarrow d_{X}\left(x_{1}, x_{2}\right)=0 \text { and } d_{Y}\left(y_{1}, y_{2}\right)=0 \\
& \Longleftrightarrow x_{1}=x_{2} \text { and } y_{1}=y_{2} \\
& \Longleftrightarrow\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)
\end{aligned}
$$

$$
\geq 0+0 \quad\left[\text { since } d_{X}, d_{Y}\right. \text { satisfy (M1)] }
$$

$$
\Longleftrightarrow d_{X}\left(x_{1}, x_{2}\right)=0 \text { and } d_{Y}\left(y_{1}, y_{2}\right)=0 \quad \text { [since both terms are nonnegative] }
$$

We next check (M2). Let $x_{1}, x_{2} \in X$ and $y_{1}, y_{2} \in Y$ be any points.

$$
\begin{aligned}
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & =d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right) \\
& =d_{X}\left(x_{2}, x_{1}\right)+d_{Y}\left(y_{2}, y_{1}\right) \quad\left[\text { since } d_{X}, d_{Y} \text { satisfy }(\mathrm{M} 2)\right] \\
& =d\left(\left(x_{2}, y_{2}\right),\left(x_{1}, y_{1}\right)\right)
\end{aligned}
$$

Finally, we check (M3). Let $x_{1}, x_{2}, x_{3} \in X$ and $y_{1}, y_{2}, y_{3} \in Y$ be any points.

$$
\begin{aligned}
d\left(\left(x_{1}, y_{1}\right),\right. & \left.\left.\left(x_{2}, y_{2}\right)\right)+d\left(\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right)\right) \\
& =d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right)+d_{X}\left(x_{2}, x_{3}\right)+d_{Y}\left(y_{2}, y_{3}\right) \\
& =\left(d_{X}\left(x_{1}, x_{2}\right)+d_{X}\left(x_{2}, x_{3}\right)\right)+\left(d_{Y}\left(y_{1}, y_{2}\right)+d_{Y}\left(y_{2}, y_{3}\right)\right) \\
& \geq d_{X}\left(x_{1}, x_{3}\right)+d_{Y}\left(y_{1}, y_{3}\right) \\
& =d\left(\left(x_{1}, y_{1}\right),\left(x_{3}, y_{3}\right)\right)
\end{aligned}
$$

