Name: _____ Score (Out of 4 points):

1. On this quiz we will prove the following theorem.

Theorem. Let $f: X \to Y$ be a function of metric spaces. Then f is continuous if and only if the preimage of every open ball in Y is open. In other words, f is continuous if and only if $f^{-1}(B_r(y))$ is an open subset of X for every $y \in Y$ and every r > 0.

- Let $f: X \to Y$ be a function between metric spaces.
- (a) (1 point) Suppose that f is continuous. Explain why the preimage $f^{-1}(B_r(y))$ of a ball is an open subset of X for every $y \in Y$ and every r > 0.

Solution. We proved on Worksheet 3 that the function f is continuous if and only if the preimage of every open set is open. Since an open ball $B_r(y)$ is open in Y, its preimage $f^{-1}(B_r(y))$ under f is open.

(b) (3 points) Suppose the function f has the property that $f^{-1}(B_r(y))$ is an open subset of X for every y in Y and r > 0. Prove that f is continuous.

Solution. Suppose that f has the property that $f^{-1}(B_r(y))$ is an open subset of X for every y in Y and r > 0. Choose an arbitrary point $x \in X$. We will show that f is continuous at x.

Fix $\epsilon > 0$, and consider the point $f(x) \in Y$. By assumption, the preimage $f^{-1}(B_{\epsilon}(f(x)))$ of the ball $B_{\epsilon}(f(x))$ is open.

Because the ball $B_{\epsilon}(f(x))$ contains the point f(x), by definition of preimage, its preimage $f^{-1}(B_{\epsilon}(f(x)))$ must contain the point $x \in X$. Because the preimage $f^{-1}(B_{\epsilon}(f(x)))$ is open, the point x must be an interior point. Hence, there exists some $\delta > 0$ so that

$$B_{\delta}(x) \subseteq f^{-1}\Big(B_{\epsilon}(f(x))\Big).$$

Let $x' \in B_{\delta}(x)$. Then $x' \in f^{-1}(B_{\epsilon}(f(x)))$. But this means (by definition of preimage) that $f(x') \in B_{\epsilon}(f(x))$. Hence the containment $B_{\delta}(x) \subseteq f^{-1}(B_{\epsilon}(f(x)))$ implies that

$$f(B_{\delta}(x)) \subseteq B_{\epsilon}(f(x)).$$

We have therefore proved that, for all $x \in X$ and all $\epsilon > 0$, there exists a $\delta > 0$ so that $f(B_{\delta}(x)) \subseteq B_{\epsilon}(f(x))$. This means, by definition, that the function f is continuous, as claimed.