Name: \qquad Score (Out of 5 points):

1. (2 points) $X=\{a, b, c\}, \mathcal{T}=\{\varnothing,\{c\},\{b, c\},\{a, b, c\}\}, A=\{a, c\}$.
$\operatorname{Int}(A)=\underline{\{c\}} \quad \bar{A}=\underline{X=\{a, b, c\}} \quad \partial A=\underline{\{a, b\}} \quad A^{\prime}=\underline{\{a, b\}}$
2. (3 points) Let A be a subset of a topological space X. Prove that $X \backslash \bar{A}=\operatorname{Int}(X \backslash A)$.

Solutions.

Our solution will use the following definitions:

The interior of a set B is the set of interior points of B. A point $x \in B$ is an interior point of B if and only if x has an open neighbourhood contained in B.

A point $x \in X$ is in the closure of a set A if and only if every open neighbourhood of x contains a point of A. Thus, a point $x \in X$ is not in the closure of A if and only if there exists some open neighbourhood of x that is disjoint from A.

Putting these definitions together:

$$
\begin{aligned}
\operatorname{Int}(X \backslash A) & =\{x \in X \mid x \text { is an interior point of } X \backslash A\} \\
& =\{x \in X \mid \text { there is an open neighbourhood } U \text { of } x \text { with } x \in U \subseteq X \backslash A\} \\
& =\{x \in X \mid \text { there is an open neighbourhood } U \text { of } x \text { with } U \cap A=\varnothing\} \\
& =\{x \in X \mid x \notin \bar{A}\} \\
& =X \backslash \bar{A} .
\end{aligned}
$$

