Name: \qquad Score (Out of 6 points):

1. (6 points) State whether each of the following functions is continuous and/or open by circling "Continuous" and/or "Open". No justifcation necessary.
\qquad

$$
\begin{aligned}
f:(\mathbb{R}, \text { cofinite }) & \rightarrow(\mathbb{R}, \text { Euclidean }) \\
f(x) & =x
\end{aligned}
$$

Continuous
$g:(\mathbb{R}$, discrete $) \rightarrow(\mathbb{R}$, Euclidean $)$

$$
g(x)=x
$$

Continuous Open

$$
\begin{aligned}
k:(\mathbb{R}, \text { indiscrete }) & \rightarrow(\mathbb{R}, \text { Euclidean }) \\
k(x) & =x
\end{aligned}
$$

Continuous
Open

Let $X=\mathbb{R}$ and $\mathcal{T}=\{(a, \infty) \mid a \in \mathbb{R}\} \cup\{\mathbb{R}\} \cup\{\varnothing\}$.
Continuous Open

$$
\begin{aligned}
h:(\mathbb{R}, \mathcal{T}) & \rightarrow(\mathbb{R}, \text { cofinite }) \\
h(x) & =x
\end{aligned}
$$

Let X, Y be any topological spaces, and endow $X \times Y$ with the product topology. Let π_{X} be the projection
 map

$$
\begin{aligned}
\pi_{X}: X \times Y & \rightarrow X \\
\pi_{X}(x, y) & =x
\end{aligned}
$$

Let $X=\{a, b, c, d\}$ and
Continuous Open

$$
\begin{aligned}
& \mathcal{T}=\{\varnothing,\{a, b\},\{c\},\{a, b, c\},\{a, b, c, d\}\} . \\
& F:(\mathbb{R}, \text { Euclidean }) \rightarrow(X, \mathcal{T}) \\
& F(x)= \begin{cases}a, & x \in(0,1] \\
b, & x \in(1, \infty) \\
c, & x \in(-\infty, 0) \\
d, & x=0\end{cases}
\end{aligned}
$$

