1 Subspaces of topological spaces

Definition 1.1. (Subspace topology.) Let $\left(X, \mathcal{T}_{X}\right)$ be a topological space, and let $S \subseteq X$ be any subset. Then S inherits the structure of a topological space, defined by the topology

$$
\mathcal{T}_{S}=\left\{U \cap S \mid U \in \mathcal{T}_{X}\right\}
$$

The topology \mathcal{T}_{S} on S is called the subspace topology.
Example 1.2. Describe the subspace topology on the following subsets of \mathbb{R}, with the topology induced by the Euclidean metric (we call this the "standard topology").
(a) $S=\{0,1,2\}$
(b) $S=(0,1)$

In-class Exercises

1. Verify that the subspace topology is, in fact, a topology.
2. Let $\left(X, \mathcal{T}_{X}\right)$ be a topological space, and let $S \subseteq X$ be any subset. Let ι_{S} be the inclusion map

$$
\begin{gathered}
\iota_{S}: S \rightarrow X \\
\iota_{S}(s)=s
\end{gathered}
$$

Verify that the subspace topology on S is precisely the set $\left\{i_{S}^{-1}(U) \mid U \subseteq X\right.$ is open $\}$.
Remark: We haven't defined these terms, but we can summarize this result by the slogan "the subspace topology on S is the coarsest topology that makes the inclusion maps ι_{S} continuous".
3. Let $\left(X, \mathcal{T}_{X}\right)$ be a topological space, and let $S \subseteq X$ be a subset. Let \mathcal{T}_{S} denote the subspace topology on S.
(a) Show by example that an open subset of S (in the subspace topology \mathcal{T}_{S}) may not be open as a subset of X. In other words, show there could be a subset $U \subseteq S$ with $U \in \mathcal{T}_{S}$, $U \notin \mathcal{T}_{X}$.
(b) Conversely, suppose that $U \subseteq S$ and U is open in X. Show that U is open in the subspace topology on S. In other words, for $U \subseteq S$, if $U \in \mathcal{T}_{X}$ then $U \in \mathcal{T}_{S}$.
(c) Suppose that S is a an open subset of X. Show that a subset $U \subseteq S$ is open in S (with the subspace topology) if and only if it is open in X. In other words, whenever S is open and $U \subseteq S, U \in \mathcal{T}_{S}$ if and only if $U \in \mathcal{T}_{X}$.
4. Let $\left(X, \mathcal{T}_{X}\right)$ be a topological space and let $S \subseteq X$ be a subset endowed with the subspace topology \mathcal{T}_{S}. Show that a set $C \subseteq S$ is closed in S if and only if there is some set $D \subseteq X$ that is closed in X with $C=D \cap S$.
5. (Optional). Let $\left(X, \mathcal{T}_{X}\right)$ be a topological space, and let $Z \subseteq Y \subseteq X$ be subsets. Show that the subspace topology on Z as a subspace of X coincides with the subspace topology on X as a subspace of Y (with the subspace topology as a subset of X). Conclude that there is no ambiguity in how to topologize the subset Z - to refer to its "subspace topology" we do not need to specify whether Y or X is the ambient space.
6. (Optional). Let (X, d) be a metric space, and let \mathcal{T}_{d}^{X} be the topology induced by the metric. Let $S \subseteq X$ be a subset. We now have two methods of constructing a topology on S : we can restrict the metric from X to S, and take the topology \mathcal{T}_{d}^{S} induced by the metric. We can also take the subspace topology \mathcal{T}_{S} defined by \mathcal{T}_{d}^{X}. Show that these two topologies on S are equal, so there is no ambiguity in how to topologize a subset of a metric space.
7. (Optional). Let (X, d) be a metric space with the metric topology \mathcal{T}_{d}. Show that the subspace topology on any finite subset of X is the discrete topology.
8. (Optional). Let (X, \mathcal{T}) be a topological space, and $S \subseteq X$ a subset endowed with the subspace topology.
(a) Suppose X has the discrete topology. Must S have the discrete topology?
(b) Suppose X has the indiscrete topology. Must S have the indiscrete topology?
(c) Suppose X is metrizable. Is S metrizable?
(d) Recall that a topological space is Hausdorff if every pair of points have disjoint open neighbourhoods. If X is Hausdorff, then must S be Hausdorff?
(e) A space has the T_{1} property if every singleton subset $\{x\}$ is closed. If X is T_{1}, then must S be T_{1} ?
(f) For which of the above does the converse hold?

Remark: A property is called hereditary if, whenever a topological space has the property, all of its subspaces necessarily have the property.
9. (Optional). Consider \mathbb{R} with the standard topology (that is, the topology induced by the Euclidean metric). For each of a the following statements, construct a nonempty subset S of \mathbb{R} with that satisfies the description, or prove that none exists.
(a) S is an infinite, closed subset of \mathbb{R}, and the subspace topology on S is discrete.
(b) S is not a closed subset of \mathbb{R}, and the subspace topology on S is discrete.
(c) S has the indiscrete topology.
(d) The subspace topology on S consists of exactly 2 open subsets.
(e) The subspace topology on S consists of exactly 3 open subsets.

