1 Products of topological spaces

Definition 1.1. (The product topology.) Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be topological spaces. Then the product topology $\mathcal{T}_{X \times Y}$ on $X \times Y$ is the collection of subsets of $X \times Y$ generated by the set

$$
\mathcal{B}=\{U \times V \mid U \subseteq X \text { is open, and } V \subseteq Y \text { is open }\}
$$

This means that $\mathcal{T}_{X \times Y}$ consists of all unions of elements of \mathcal{B}.
Proposition 1.2. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. Then the product metric $d_{X \times Y}$ induces the product topology on $X \times Y$.

In-class Exercises

1. Verify that $\mathcal{T}_{X \times Y}$ is indeed a topology on $X \times Y$, and that \mathcal{B} is a basis for this topology. Hint: One approach is to use Worksheet \#12 Problem 5.
2. Prove that the projection map $\pi_{X}: X \times Y \rightarrow X$ is both continuous and open with respect to the topologies $\mathcal{T}_{X \times Y}$ and \mathcal{T}_{X}. (The same argument shows that the projection map π_{Y} is both continuous and open).
3. Let $f_{1}: X \rightarrow Y_{1}$ and $f_{2}: X \rightarrow Y_{2}$ be two functions of topological spaces, and define a function

$$
\begin{aligned}
f: X & \rightarrow Y_{1} \times Y_{2} \\
f(x) & =\left(f_{1}(x), f_{2}(x)\right)
\end{aligned}
$$

Show that f is continuous (with respect to the product topology on $Y_{1} \times Y_{2}$) if and only if both f_{1} and f_{2} are continuous.
Hint: Notice $f_{i}=\pi_{i} \circ f$, where $\pi_{1}: Y_{1} \times Y_{2} \rightarrow Y_{1}, \pi_{2}: Y_{1} \times Y_{2} \rightarrow Y_{2}$ are the projection maps.
4. (Optional). Prove the following theorem.

Theorem (Equivalent definition of the product topology). Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be topological spaces. Then the product topology $\mathcal{T}_{X \times Y}$ on $X \times Y$ is precisely the collection of subsets of $X \times Y$,

$$
\mathcal{T}_{X \times Y}=\left\{\begin{array}{l|l}
W & \begin{array}{l}
\text { for each }(x, y) \in W, \text { there is a some } U \in \mathcal{T}_{X} \text { and } V \in \mathcal{T}_{Y} \\
\text { such that }(x, y) \in(U \times V) \subseteq W
\end{array}
\end{array}\right\}
$$

5. (Optional). (Finite products). Given a finite product $X=X_{1} \times X_{2} \times \cdots \times X_{n}$ of topological spaces, we can define a topology on X by induction, by first taking the product topology on $X_{1} \times X_{2}$, then the product topology on $\left(X_{1} \times X_{2}\right) \times X_{3}$, etc. Show that the resultant topology on X (called the product topology) is generated by the basis

$$
\mathcal{B}=\left\{U_{1} \times U_{2} \times \cdots \times U_{n} \mid U_{i} \subseteq X_{i} \text { is open }\right\}
$$

6. (Optional). (Infinite products). Let $\left\{X_{i}\right\}_{i \in I}$ be a (possibly infinite) collection of sets, and let $X=\prod_{i \in I} X_{i}$ be their product. We denote elements of X by $\left(x_{i}\right)_{i \in I}$. Define two topologies on X :

- The box topology on X is the topology generated by the basis

$$
\mathcal{B}_{B}=\left\{\prod_{i \in I} U_{i} \mid U_{i} \subseteq X_{i} \text { is open }\right\}
$$

- The product topology on X is the topology generated by the basis

$$
\mathcal{B}_{P}=\left\{\prod_{i \in I} U_{i} \mid U_{i} \subseteq X_{i} \text { is open, } U_{i}=X \text { for all but finitely many } i \in I\right\}
$$

(a) Prove that both \mathcal{B}_{B} and \mathcal{B}_{P} are bases (in the sense of Worksheet $\# 12$, Problem 5). Conclude that the box topology and product topology on X are, in fact, topologies.
(b) Suppose that I is finite. Show that the box topology and the product topology are equal, and both are the usual product topology on X in the sense of Problem 5.
(c) Which topology is finer, the box or the product topology? If we consider maps from a topological space into the product X, what can you say about the relationship between continuity of a map with respect to the box topology, and continuity with respect to the product topology? What about for maps out of X ?
(d) For reasons that are formalized using "category theory" and the concept of a "universal property", we want our products to satisfy the following statement:

Let $\left\{Y_{i}\right\}_{i \in I}$ be a collection of topological spaces, and $\prod_{i \in I} Y_{i}$ their product. Let X be any topological space, and let $f_{i}: X \rightarrow Y_{i}$ be a collection of functions. Then the function

$$
\begin{aligned}
f: X & \rightarrow \prod_{i \in I} Y_{i} \\
f(x) & =\left(f_{i}(x)\right)_{i \in I}
\end{aligned}
$$

is continuous if and only if each function f_{i} is continuous.
Prove that this property always holds if we put the product topology on $\prod_{i \in I} Y_{i}$, but that this property may fail if we put the box topology on $\prod_{i \in I} Y_{i}$. This property is the reason that the product topology is generally considered the "correct" topology on $\prod_{i \in I} Y_{i}$.
Hint: Consider the function $f: \mathbb{R} \rightarrow \prod_{n \in \mathbb{N}} \mathbb{R}$ given by $f(x)=(x, x, x, \ldots)$.
(e) Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be a countable collection of metric spaces. Show that the product topology on $\prod_{n \in \mathbb{N}} X_{n}$ is metrizable, but the box topology is not.

