1 Connected topological spaces

Definition 1.1. (Disconnected spaces; connected spaces). A topological space (X, \mathcal{T}) is disconnected if there exist disjoint nonempty open subsets A and B in X such that $X = A \cup B$. We call the sets A and B a separation of X. If no separation of X exists, then X is called connected.

A subset S of X is said to be *connected* if it is connected when viewed with the subspace topology (S, \mathcal{T}_S) . This means . . .

Example 1.2. Determine which of the following topological spaces are connected.

(a)
$$X = \mathbb{R}, \mathcal{T} = \{(-\infty, a) \mid a \in \mathbb{R}\} \cup \{\mathbb{R}, \emptyset\}$$

(b)
$$X = \{a, b, c, d\}, \mathcal{T} = \{\emptyset, \{a, b\}, \{c\}, \{a, b, c\}, \{d\}, \{a, b, d\}, \{c, d\}, \{a, b, c, d\}\}$$

In-class Exercises

1. Show that the following topological spaces (with the Euclidean metric) are disconnected.

(a)
$$\{\frac{1}{n} \mid n \in \mathbb{N}\}$$

(b)
$$(0,1) \cup \{5\}$$

- 2. (a) Give an example of a connected topological space X, and a subset $S \subseteq X$ that is disconnected.
 - (b) Give an example of a disconnected topological space X, and a subset $S \subseteq X$ that is connected.
- 3. Prove that a topological space (X, \mathcal{T}) is disconnected if and only if there is subset A, with $\emptyset \subsetneq A \subsetneq X$, that is both open and closed.
- 4. Consider $\{0,1\}$ as a topological space with the discrete topology. Show that a topological space (X,\mathcal{T}) is disconnected if and only if there is a continuous **surjective** function $X \to \{0,1\}$.
- 5. Prove the following (often useful) lemma:

Lemma. Let X be a topological space, and let A, B be a separation of X. Let $S \subseteq X$. If S is connected, then $S \subseteq A$ or $S \subseteq B$.

- 6. Let X be a topological space, and let A_i , $i \in I$, be a collection of subsets of X. Suppose that A_i is connected for each i.
 - (a) Show by example that the union $\bigcup_{i \in I} A_i$ may be disconnected.
 - (b) Suppose that $\bigcap_{i\in I} A_i \neq \emptyset$. Show that the union $\bigcup_{i\in I} A_i$ is connected.

7. (Optional). Consider \mathbb{R} with the Euclidean metric. Which of the following subsets are connected?

$$\{x \in \mathbb{R} \mid d(x,1) < 1 \text{ or } d(x,-1) < 1\}$$

$$\{x \in \mathbb{R} \mid d(x,1) \le 1 \text{ or } d(x,-1) < 1\}$$

$$\{x \in \mathbb{R} \mid d(x,1) \le 1 \text{ or } d(x,-1) \le 1\}$$

8. (Optional). Consider the set $X = \{a, b, c, d\}$. For which of the following topologies \mathcal{T} is the topological space (X, \mathcal{T}) connected?

(a)
$$\mathcal{T} = \left\{ \varnothing, \{c\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\} \right\}$$

(b) $\mathcal{T} = \left\{ \varnothing, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, d\}, \{a, b, d\}, \{a, b, c, d\} \right\}$

9. (Optional). Consider the following topologies on \mathbb{R} . Which of these topological spaces are connected?

- (a) indiscrete topology $(f) \ \mathcal{T} = \{\mathbb{R}, \{0, 1\}, \{0\}, \{1\}, \varnothing\} \}$ (b) discrete topology $(g) \ \mathcal{T} = \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\varnothing\} \cup \{\mathbb{R}\} \}$ (c) Euclidean topology $(h) \ \mathcal{T} = \{A \mid A \subseteq \mathbb{R}, \ 0 \notin A\} \cup \{\varnothing\} \}$ (d) cofinite topology $(i) \ \mathcal{T} = \{A \mid A \subseteq \mathbb{R}, \ 0 \notin A\} \cup \{\mathbb{R}\} \}$ (e) $\ \mathcal{T} = \{\mathbb{R}, \{0, 1\}, \varnothing\} \}$ (i) $\ \mathcal{T} = \{A \mid A \subseteq \mathbb{R}, \ 1 \in A\} \cup \{\varnothing\} \}$
- 10. (Optional). Let (X, \mathcal{T}) be a topological space. Let $\{A_n \mid n \in \mathbb{Z}\}$ be a family of connected subspaces of X such that $A_n \cap A_{n+1} \neq \emptyset$ for every n. Prove $\bigcup_{n \in \mathbb{Z}} A_n$ is connected.
- 11. (Optional). Let (X, \mathcal{T}) be a topological space. Let $\{A_n \mid n \in \mathbb{N}\}$ be a family of connected subspaces in X such that $A_{n+1} \subseteq A_n$ for every $n \in \mathbb{N}$. Is $\bigcap_{n \in \mathbb{N}} A_n$ is necessarily connected?
- 12. (Optional). Let (X, \mathcal{T}) be a topological space, and let $A, B \subseteq X$. Suppose $A \cup B$ and $A \cap B$ are connected. Prove that if A and B are both closed or both open, then A and B are connected.